1,657,196 research outputs found
Ubiquitous energy storage
This paper presents a vision of a future power system with "ubiquitous energy storage", where storage would be utilized at all levels of the electricity system. The growing requirement for storage is reviewed, driven by the expansion of distributed generation. The capabilities and existing applications of various storage technologies are presented, providing a useful review of the state of the art. Energy storage will have to be integrated with the power system and there are various ways in which this may be achieved. Some of these options are discussed, as are commercial and regulatory issues. In two case studies, the costs and benefits of some storage options are assessed. It is concluded that electrical storage is not cost effective but that thermal storage offers attractive opportunities
Literature Review : Electrical Energy Storage for Scotland
This report examines the role and value of energy storage in the context of electricity systems that are expected to absorb increasing quantities of time variable electricity generation from renewable sources in the years ahead. Particular attention is given to Scotland with its vast renewable energy potential and limited interconnection to the parts of the UK with the major electricity loads. Energy storage technologies cover a wide range of levels of development from mature technologies like pumped hydro with over 50 years of operational experience, to technologies still under development such as flow batteries and hydrogen storage systems, and all of these are reviewed. All scales of possible application are considered here from whole power system support, through community power provision, down to individual households
Recommended from our members
Thermodynamic analysis of a novel fossil-fuel–free energy storage system with a trans-critical carbon dioxide cycle and heat pump
This paper presents and analyzes a novel fossil-fuel–free trans-critical energy storage system that uses CO2 as the working fluid in a closed loop shuttled between two saline aquifers or caverns at different depths: one a low-pressure reservoir and the other a high-pressure reservoir. Thermal energy storage and a heat pump are adopted to eliminate the need for external natural gas for heating the CO2 entering the energy recovery turbines. We carefully analyze the energy storage and recovery processes to reveal the actual efficiency of the system. We also highlight thermodynamic and sensitivity analyses of the performance of this fossil-fuel–free trans-critical energy storage system based on a steady-state mathematical method. It is found that the fossil-fuel–free trans-critical CO2 energy storage system has good comprehensive thermodynamic performance. The exergy efficiency, round-trip efficiency, and energy storage efficiency are 67.89%, 66%, and 58.41%, and the energy generated of per unit storage volume is 2.12 kW·h/m3, and the main contribution to exergy destruction is the turbine reheater, from which we can quantify how performance can be improved. Moreover, with a higher energy storage and recovery pressure and lower pressure in the low-pressure reservoir, this novel system shows promising performance
A unit commitment study of the application of energy storage toward the integration of renewable generation
To examine the potential benefits of energy storage in the electric grid, a
generalized unit commitment model of thermal generating units and energy storage
facilities is developed. Three different storage scenarios were tested—two without
limits to total storage assignment and one with a constrained maximum storage
portfolio. Given a generation fleet based on the City of Austin’s renewable energy
deployment plans, results from the unlimited energy storage deployment scenarios
studied show that if capital costs are ignored, large quantities of seasonal storage
are preferred. This operational approach enables storage of plentiful wind
generation during winter months that can then be dispatched during high cost peak
periods in the summer. These two scenarios yielded 94 million in
yearly operational cost savings but would cost hundreds of billions to implement.
Conversely, yearly cost reductions of $40 million can be achieved with one
compressed air energy storage facility and a small set of electrochemical storage
devices totaling 13GWh of capacity. Similarly sized storage fleets with capital
costs, service lifetimes, and financing consistent with these operational cost savings
can yield significant operational benefit by avoiding dispatch of expensive peaking
generators and improving utilization of renewable generation throughout the year.
Further study using a modified unit commitment model can help to clarify optimal
storage portfolios, reveal appropriate market participation approaches, and
determine the optimal siting of storage within the grid.Mechanical Engineerin
Inertial Energy Storage for Spacecraft
The feasibility of inertial energy storage in a spacecraft power system is evaluated on the basis of a conceptual integrated design that encompasses a composite rotor, magnetic suspension and a permanent magnet (PM) motor/generator for a 3-kW orbital average payload at a bus distribution voltage of 250 volts dc. The conceptual design, is referred to as a Mechanical Capacitor. The baseline power system configuration selected is a series system employing peak-power-tracking for a Low Earth-Orbiting application. Power processing, required in the motor/generator, provides potential alternative that can only be achieved in systems with electrochemical energy storage by the addition of power processing components. One such alternative configuration provides for peak-power-tracking of the solar array and still maintains a regulated bus, without the expense of additional power processing components. Precise speed control of the two counterrotating wheels is required to reduce interaction with the attitude control system (ACS) or alternatively, used to perform attitude control functions
Comparative energy storage assessment item
This analysis, a Space Station application study, rediscovered Integrated Power and Attitude Control (IPAC) and found the approach to have lower initial and resupply weight and lower initial and resupply cost than either battery/CMG or regenerative fuel cell/CMG systems. Preliminary trade studies were performed comparing (IPAC) with equivalent independent electrochemical power and control moment gyro (CMG) control approaches. Technologies considered to have adequate status for an initial Space Station were: (1) nickel cadmium batteries (NiCd batteries), (2) regenerative fuel cells (RFC), (3) Skylab class CMG's, and (4) state of the art IPAC using metal wheels and ball bearing suspension (SOA-IPAC). An advanced IPAC (ADV-IPAC) employing composite rotor material and magnetic suspension was included in the comparisons to illustrate a possible range of performance and cost of inertial systems. The candidates were compared on the basis of initial weight and cost and on the basis of resupply weight and cost for a 15 year mission. Thus, SOA-IPAC would appear to be an attractive approach for the initial Space Station and possible technology improvements would further the appeal for the initial and/or growth Space Station
Note on the pumped storage potential of the Onslow-Manorburn depression, New Zealand
The Onslow-Manorburn depression in the South Island of New Zealand has possibility for development as the upper reservoir of the world's largest pumped storage scheme, as measured by an energy storage capacity of 10,200 GWh of realisable potential energy. This would more than triple the total national hydro-power energy storage capacity. It is envisaged that the scheme could either operate on a seasonal cycle or act as a passive energy reserve to buffer existing hydro-power capacity against the effect of dry years
Energy Storage Sharing Strategy in Distribution Networks Using Bi-level Optimization Approach
In this paper, we address the energy storage management problem in
distribution networks from the perspective of an independent energy storage
manager (IESM) who aims to realize optimal energy storage sharing with
multi-objective optimization, i.e., optimizing the system peak loads and the
electricity purchase costs of the distribution company (DisCo) and its
customers. To achieve the goal of the IESM, an energy storage sharing strategy
is therefore proposed, which allows DisCo and customers to control the assigned
energy storage. The strategy is updated day by day according to the system
information change. The problem is formulated as a bi-level mathematical model
where the upper level model (ULM) seeks for optimal division of energy storage
among Disco and customers, and the lower level models (LLMs) represent the
minimizations of the electricity purchase costs of DisCo and customers.
Further, in order to enhance the computation efficiency, we transform the
bi-level model into a single-level mathematical program with equilibrium
constraints (MPEC) model and linearize it. Finally, we validate the
effectiveness of the strategy and complement our analysis through case studies
- …
