997 research outputs found

    The Dynamics of Vehicular Networks in Urban Environments

    Full text link
    Vehicular Ad hoc NETworks (VANETs) have emerged as a platform to support intelligent inter-vehicle communication and improve traffic safety and performance. The road-constrained, high mobility of vehicles, their unbounded power source, and the emergence of roadside wireless infrastructures make VANETs a challenging research topic. A key to the development of protocols for inter-vehicle communication and services lies in the knowledge of the topological characteristics of the VANET communication graph. This paper explores the dynamics of VANETs in urban environments and investigates the impact of these findings in the design of VANET routing protocols. Using both real and realistic mobility traces, we study the networking shape of VANETs under different transmission and market penetration ranges. Given that a number of RSUs have to be deployed for disseminating information to vehicles in an urban area, we also study their impact on vehicular connectivity. Through extensive simulations we investigate the performance of VANET routing protocols by exploiting the knowledge of VANET graphs analysis.Comment: Revised our testbed with even more realistic mobility traces. Used the location of real Wi-Fi hotspots to simulate RSUs in our study. Used a larger, real mobility trace set, from taxis in Shanghai. Examine the implications of our findings in the design of VANET routing protocols by implementing in ns-3 two routing protocols (GPCR & VADD). Updated the bibliography section with new research work

    Gravitational Clustering: A Simple, Robust and Adaptive Approach for Distributed Networks

    Full text link
    Distributed signal processing for wireless sensor networks enables that different devices cooperate to solve different signal processing tasks. A crucial first step is to answer the question: who observes what? Recently, several distributed algorithms have been proposed, which frame the signal/object labelling problem in terms of cluster analysis after extracting source-specific features, however, the number of clusters is assumed to be known. We propose a new method called Gravitational Clustering (GC) to adaptively estimate the time-varying number of clusters based on a set of feature vectors. The key idea is to exploit the physical principle of gravitational force between mass units: streaming-in feature vectors are considered as mass units of fixed position in the feature space, around which mobile mass units are injected at each time instant. The cluster enumeration exploits the fact that the highest attraction on the mobile mass units is exerted by regions with a high density of feature vectors, i.e., gravitational clusters. By sharing estimates among neighboring nodes via a diffusion-adaptation scheme, cooperative and distributed cluster enumeration is achieved. Numerical experiments concerning robustness against outliers, convergence and computational complexity are conducted. The application in a distributed cooperative multi-view camera network illustrates the applicability to real-world problems.Comment: 12 pages, 9 figure

    Data and resource management in wireless networks via data compression, GPS-free dissemination, and learning

    Get PDF
    “This research proposes several innovative approaches to collect data efficiently from large scale WSNs. First, a Z-compression algorithm has been proposed which exploits the temporal locality of the multi-dimensional sensing data and adapts the Z-order encoding algorithm to map multi-dimensional data to a one-dimensional data stream. The extended version of Z-compression adapts itself to working in low power WSNs running under low power listening (LPL) mode, and comprehensively analyzes its performance compressing both real-world and synthetic datasets. Second, it proposed an efficient geospatial based data collection scheme for IoTs that reduces redundant rebroadcast of up to 95% by only collecting the data of interest. As most of the low-cost wireless sensors won’t be equipped with a GPS module, the virtual coordinates are used to estimate the locations. The proposed work utilizes the anchor-based virtual coordinate system and DV-Hop (Distance vector of hops to anchors) to estimate the relative location of nodes to anchors. Also, it uses circle and hyperbola constraints to encode the position of interest (POI) and any user-defined trajectory into a data request message which allows only the sensors in the POI and routing trajectory to collect and route. It also provides location anonymity by avoiding using and transmitting GPS location information. This has been extended also for heterogeneous WSNs and refined the encoding algorithm by replacing the circle constraints with the ellipse constraints. Last, it proposes a framework that predicts the trajectory of the moving object using a Sequence-to-Sequence learning (Seq2Seq) model and only wakes-up the sensors that fall within the predicted trajectory of the moving object with a specially designed control packet. It reduces the computation time of encoding geospatial trajectory by more than 90% and preserves the location anonymity for the local edge servers”--Abstract, page iv

    FireFly Mosaic: A Vision-Enabled Wireless Sensor Networking System

    Full text link
    Abstract — With the advent of CMOS cameras, it is now possible to make compact, cheap and low-power image sensors capable of on-board image processing. These embedded vision sensors provide a rich new sensing modality enabling new classes of wireless sensor networking applications. In order to build these applications, system designers need to overcome challanges associated with limited bandwith, limited power, group coordination and fusing of multiple camera views with various other sensory inputs. Real-time properties must be upheld if multiple vision sensors are to process data, com-municate with each other and make a group decision before the measured environmental feature changes. In this paper, we present FireFly Mosaic, a wireless sensor network image processing framework with operating system, networking and image processing primitives that assist in the development of distributed vision-sensing tasks. Each FireFly Mosaic wireless camera consists of a FireFly [1] node coupled with a CMUcam3 [2] embedded vision processor. The FireFly nodes run the Nano-RK [3] real-time operating system and communicate using the RT-Link [4] collision-free TDMA link protocol. Using FireFly Mosaic, we demonstrate an assisted living application capable of fusing multiple cameras with overlapping views to discover and monitor daily activities in a home. Using this application, we show how an integrated platform with support for time synchronization, a collision-free TDMA link layer, an underlying RTOS and an interface to an embedded vision sensor provides a stable framework for distributed real-time vision processing. To the best of our knowledge, this is the first wireless sensor networking system to integrate multiple coordinating cameras performing local processing. I

    Networking - A Statistical Physics Perspective

    Get PDF
    Efficient networking has a substantial economic and societal impact in a broad range of areas including transportation systems, wired and wireless communications and a range of Internet applications. As transportation and communication networks become increasingly more complex, the ever increasing demand for congestion control, higher traffic capacity, quality of service, robustness and reduced energy consumption require new tools and methods to meet these conflicting requirements. The new methodology should serve for gaining better understanding of the properties of networking systems at the macroscopic level, as well as for the development of new principled optimization and management algorithms at the microscopic level. Methods of statistical physics seem best placed to provide new approaches as they have been developed specifically to deal with non-linear large scale systems. This paper aims at presenting an overview of tools and methods that have been developed within the statistical physics community and that can be readily applied to address the emerging problems in networking. These include diffusion processes, methods from disordered systems and polymer physics, probabilistic inference, which have direct relevance to network routing, file and frequency distribution, the exploration of network structures and vulnerability, and various other practical networking applications.Comment: (Review article) 71 pages, 14 figure

    Energy-efficient wireless sensor networks via scheduling algorithm and radio Wake-up technology

    Get PDF
    One of the most important requirements for wireless sensor networks (WSNs) is the energy efficiency, since sensors are usually fed by a battery that cannot be replaced or recharged. Radio wake-up - the technology that lets a sensor completely turn off and be reactivated by converting the electromagnetic field of radio waves into energy - is now one of the most emergent strategies in the design of wireless sensor networks. This work presents Scheduled on Demand Radio WakeUp (SORW), a flexible scheduler designed for a wireless sensor network where duty cycling strategy and radio wake-up technology are combined in order to optimize the network lifetime. In particular, it tries to keep sensors sleeping as much as possible, still guaranteeing a minimum number of detections per unit of time. Performances of SORW are provided through the use of OMNet++ simulator and compared to results obtained by other basic approaches. Results show that with SORW it is possible to reach a theoretical lifetime of several years, compared to simpler schedulers that only reach days of activity of the network

    \A Ro- bust Node Selection Strategy for Lifetime Extension in Wireless Sensor Networks

    Get PDF
    Distributed Wireless Sensor Networks (WSNs) consist of energy-constrained sensor nodes that may be deployed in large numbers in order to monitor a given area, track military targets, detect civilian targets or for other purposes. In such densely deployed environments, multiple transmissions can lead to collisions resulting in packet losses and network congestion. This can increase latency and reduce energy efficiency. These networks also feature significant redundancy since nodes close to each other often sense similar data. Therefore, it may be adequate to employ only a subset of the deployed nodes at any given time in the network. In this thesis, node subsets are selected in a manner that coverage and connectivity are consistently achieved. The working subsets are changed after predetermined durations. A framework using concepts from spatial statistics is developed as an approach to selecting the subset of sensor nodes. Proximal nodes negotiate with each other using energy information, to decide which nodes stay working while others go to sleep mode. The algorithm is executed autonomously by the network. The approach presented ensures that the selected subsets while not necessarily exclusive of previous selections covers the region of interest. Simulation results show that the algorithm is robust and retains some level of redundancy. The algorithm shows significant improvement in energy consumption compared with a network with no selection. The selected subset is shown to be able to withstand significant levels of fault in the network. Conclusions regarding the flexibility and application scenarios of the algorithm are drawn and opportunities for future work indicated
    • …
    corecore