311 research outputs found

    Energy-aware Successor Tree Consistent EDF Scheduling for PCTGs on MPSoCs

    Get PDF
    Multiprocessor System-on-Chips (MPSoCs) computing architectures are gaining popularity due to their high-performance capabilities and exceptional Quality-of-Service (QoS), making them a particularly well-suited computing platform for computationally intensive workloads and applications.} Nonetheless, The scheduling and allocation of a single task set with precedence restrictions on MPSoCs have presented a persistent research challenge in acquiring energy-efficient solutions. The complexity of this scheduling problem escalates when subject to conditional precedence constraints between the tasks, creating what is known as a Conditional Task Graph (CTG). Scheduling sets of Periodic Conditional Task Graphs (PCTGs) on MPSoC platforms poses even more challenges. This paper focuses on tackling the scheduling challenge for a group of PCTGs on MPSoCs equipped with shared memory. The primary goal is to minimize the overall anticipated energy usage, considering two distinct power models: dynamic and static power models. To address this challenge, this paper introduces an innovative scheduling method named Energy Efficient Successor Tree Consistent Earliest Deadline First (EESEDF). The EESEDF approach is primarily designed to maximize the worst-case processor utilization. Once the tasks are assigned to processors, it leverages the earliest successor tree consistent deadline-first strategy to arrange tasks on each processor. To minimize the overall expected energy consumption, EESEDF solves a convex Non-Linear Program (NLP) to determine the optimal speed for each task. Additionally, the paper presents a highly efficient online Dynamic Voltage Scaling (DVS) heuristic, which operates in O(1) time complexity and dynamically adjusts the task speeds in real-time}. We achieved the average improvement, maximum improvement, and minimum improvement of EESEDF+Online-DVS 15%, 17%, and 12%, respectively compared to EESEDF alone. Furthermore, in the second set of experiments, we compared EESEDF against state-of-the-art techniques LESA and NCM. The results showed that EESEDF+Online-DVS outperformed these existing approaches, achieving notable energy efficiency improvements of 25% and 20% over LESA and NCM, respectively. \hl{Our proposed scheduler, EESEDF+Online-DVS, also achieves significant energy efficiency gains compared to existing methods. It outperforms IOETCS-Heuristic by approximately 13% while surpassing BESS and CAP-Online by impressive margins of 25% and 35%, respectively

    Multiprocessor System-on-Chips based Wireless Sensor Network Energy Optimization

    Get PDF
    Wireless Sensor Network (WSN) is an integrated part of the Internet-of-Things (IoT) used to monitor the physical or environmental conditions without human intervention. In WSN one of the major challenges is energy consumption reduction both at the sensor nodes and network levels. High energy consumption not only causes an increased carbon footprint but also limits the lifetime (LT) of the network. Network-on-Chip (NoC) based Multiprocessor System-on-Chips (MPSoCs) are becoming the de-facto computing platform for computationally extensive real-time applications in IoT due to their high performance and exceptional quality-of-service. In this thesis a task scheduling problem is investigated using MPSoCs architecture for tasks with precedence and deadline constraints in order to minimize the processing energy consumption while guaranteeing the timing constraints. Moreover, energy-aware nodes clustering is also performed to reduce the transmission energy consumption of the sensor nodes. Three distinct problems for energy optimization are investigated given as follows: First, a contention-aware energy-efficient static scheduling using NoC based heterogeneous MPSoC is performed for real-time tasks with an individual deadline and precedence constraints. An offline meta-heuristic based contention-aware energy-efficient task scheduling is developed that performs task ordering, mapping, and voltage assignment in an integrated manner. Compared to state-of-the-art scheduling our proposed algorithm significantly improves the energy-efficiency. Second, an energy-aware scheduling is investigated for a set of tasks with precedence constraints deploying Voltage Frequency Island (VFI) based heterogeneous NoC-MPSoCs. A novel population based algorithm called ARSH-FATI is developed that can dynamically switch between explorative and exploitative search modes at run-time. ARSH-FATI performance is superior to the existing task schedulers developed for homogeneous VFI-NoC-MPSoCs. Third, the transmission energy consumption of the sensor nodes in WSN is reduced by developing ARSH-FATI based Cluster Head Selection (ARSH-FATI-CHS) algorithm integrated with a heuristic called Novel Ranked Based Clustering (NRC). In cluster formation parameters such as residual energy, distance parameters, and workload on CHs are considered to improve LT of the network. The results prove that ARSH-FATI-CHS outperforms other state-of-the-art clustering algorithms in terms of LT.University of Derby, Derby, U

    Heuristics for Routing and Spiral Run-time Task Mapping in NoC-based Heterogeneous MPSOCs

    Full text link
    This paper describes a new Spiral Dynamic Task Mapping heuristic for mapping applications onto NoC-based Heterogeneous MPSoC. The heuristic proposed in this paper attempts to map the tasks of an applications that are most related to each other in spiral manner and to find the best possible path load that minimizes the communication overhead. In this context, we have realized a simulation environment for experimental evaluations to map applications with varying number of tasks onto an 8x8 NoC-based Heterogeneous MPSoCs platform, we demonstrate that the new mapping heuristics with the new modified dijkstra routing algorithm proposed are capable of reducing the total execution time and energy consumption of applications when compared to state-of the-art run-time mapping heuristics reported in the literature

    Exploring Task Mappings on Heterogeneous MPSoCs using a Bias-Elitist Genetic Algorithm

    Get PDF
    Exploration of task mappings plays a crucial role in achieving high performance in heterogeneous multi-processor system-on-chip (MPSoC) platforms. The problem of optimally mapping a set of tasks onto a set of given heterogeneous processors for maximal throughput has been known, in general, to be NP-complete. The problem is further exacerbated when multiple applications (i.e., bigger task sets) and the communication between tasks are also considered. Previous research has shown that Genetic Algorithms (GA) typically are a good choice to solve this problem when the solution space is relatively small. However, when the size of the problem space increases, classic genetic algorithms still suffer from the problem of long evolution times. To address this problem, this paper proposes a novel bias-elitist genetic algorithm that is guided by domain-specific heuristics to speed up the evolution process. Experimental results reveal that our proposed algorithm is able to handle large scale task mapping problems and produces high-quality mapping solutions in only a short time period.Comment: 9 pages, 11 figures, uses algorithm2e.st

    Framework for Simulation of Heterogeneous MpSoC for Design Space Exploration

    Full text link
    Due to the ever-growing requirements in high performance data computation, multiprocessor systems have been proposed to solve the bottlenecks in uniprocessor systems. Developing efficient multiprocessor systems requires effective exploration of design choices like application scheduling, mapping, and architecture design. Also, fault tolerance in multiprocessors needs to be addressed. With the advent of nanometer-process technology for chip manufacturing, realization of multiprocessors on SoC (MpSoC) is an active field of research. Developing efficient low power, fault-tolerant task scheduling, and mapping techniques for MpSoCs require optimized algorithms that consider the various scenarios inherent in multiprocessor environments. Therefore there exists a need to develop a simulation framework to explore and evaluate new algorithms on multiprocessor systems. This work proposes a modular framework for the exploration and evaluation of various design algorithms for MpSoC system. This work also proposes new multiprocessor task scheduling and mapping algorithms for MpSoCs. These algorithms are evaluated using the developed simulation framework. The paper also proposes a dynamic fault-tolerant (FT) scheduling and mapping algorithm for robust application processing. The proposed algorithms consider optimizing the power as one of the design constraints. The framework for a heterogeneous multiprocessor simulation was developed using SystemC/C++ language. Various design variations were implemented and evaluated using standard task graphs. Performance evaluation metrics are evaluated and discussed for various design scenarios

    RewardProfiler: A Reward Based Design Space Profiler on DVFS Enabled MPSoCs

    Get PDF
    Resource mapping on a heterogeneous multi-processor system-on-chip (MPSoC) imposes enormous challenges such as identifying important design points for appropriate resource mapping for improved efficiency or performance, time consumption of exploring all the important design points for each profiled applications, etc. Moreover, incorporating a profiler into integrated development environments (IDEs) in order to achieve more detailed and accurate profiling information? on the application being targeted during runtime such that improved efficiency or performance while executing the application is achieved, the runtime resource management decision to achieve such improved "reward" has to be utilized in a certain way. In this paper, we propose a hybrid approach of resource mapping technique on DVFS enabled MPSoC, which is suitable for IDE integration due to the reduced design points in our methodology resulting in significant reduction in profiling time. We coined our approach as "RewardProfiler" (a Reward based design space Profiler), which is well capable of reducing the design space exploration without losing most of the important design points based on our heuristic approach. In our strategy, an application has to be mapped onto the available resources in such a way so that the "reward" obtained can be maximized. Our approach can also be utilized to maximize multiple "rewards" (Multivariate Reward Maximization) while executing an application. Implementation of our RewardProfiler on the Exynos 5422 MPSoC reveals the efficacy of our proposed approach under various experimental test cases and has a potential of saving 170× more time in profiling for our chosen MPSoC compared to the state-of-the-art methodologies

    Framework for simulation of fault tolerant heterogeneous multiprocessor system-on-chip

    Full text link
    Due to the ever growing requirement in high performance data computation, current Uniprocessor systems fall short of hand to meet critical real-time performance demands in (i) high throughput (ii) faster processing time (iii) low power consumption (iv) design cost and time-to-market factors and more importantly (v) fault tolerant processing. Shifting the design trend to MPSOCs is a work-around to meet these challenges. However, developing efficient fault tolerant task scheduling and mapping techniques requires optimized algorithms that consider the various scenarios in Multiprocessor environments. Several works have been done in the past few years which proposed simulation based frameworks for scheduling and mapping strategies that considered homogenous systems and error avoidance techniques. However, most of these works inadequately describe today\u27s MPSOC trend because they were focused on the network domain and didn\u27t consider heterogeneous systems with fault tolerant capabilities; In order to address these issues, this work proposes (i) a performance driven scheduling algorithm (PD SA) based on simulated annealing technique (ii) an optimized Homogenous-Workload-Distribution (HWD) Multiprocessor task mapping algorithm which considers the dynamic workload on processors and (iii) a dynamic Fault Tolerant (FT) scheduling/mapping algorithm to employ robust application processing system. The implementation was accompanied by a heterogeneous Multiprocessor system simulation framework developed in systemC/C++. The proposed framework reads user data, set the architecture, execute input task graph and finally generate performance variables. This framework alleviates previous work issues with respect to (i) architectural flexibility in number-of-processors, processor types and topology (ii) optimized scheduling and mapping strategies and (iii) fault-tolerant processing capability focusing more on the computational domain; A set of random as well as application specific STG benchmark suites were run on the simulator to evaluate and verify the performance of the proposed algorithms. The simulations were carried out for (i) scheduling policy evaluation (ii) fault tolerant evaluation (iii) topology evaluation (iv) Number of processor evaluation (v) Mapping policy evaluation and (vi) Processor Type evaluation. The results showed that PD scheduling algorithm showed marginally better performance than EDF with respect to utilization, Execution-Time and Power factors. The dynamic Fault Tolerant implementation showed to be a viable and efficient strategy to meet real-time constraints without posing significant system performance degradation. Torus topology gave better performance than Tile with respect to task completion time and power factors. Executing highly heterogeneous Tasks showed higher power consumption and execution time. Finally, increasing the number of processors showed a decrease in average Utilization but improved task completion time and power consumption; Based on the simulation results, the system designer can compare tradeoffs between a various design choices with respect to the performance requirement specifications. In general, designing an optimized Multiprocessor scheduling and mapping strategy with added fault tolerant capability will enable to develop efficient Multiprocessor systems which meet future performance goal requirements. This is the substance of this work
    • …
    corecore