35,230 research outputs found

    Energy Efficiency in Cloud Software Architectures

    Get PDF
    Cloud-based software is often considered as providing a greener, more energy-efficient solution. At the same time, it introduces more complexity and demands for new investments in cloud services, technologies, and competencies for migration, maintenance, and evolution of the underlying software architectures. To understand better the implications of cloud software architectures on energy efficiency, in this paper we present the preliminary results of a systematic literature review that investigates what kind of software architectures for cloud service provisioning allow to achieve energy-efficient solution

    A systematic literature review on Energy Efficiency in Cloud Software Architectures

    Get PDF
    Cloud-based software architectures introduce more complexity and require new competences for migration, maintenance, and evolution. Although cloud computing is often considered as an energy-efficient technology, the implications of cloud-based software on energy efficiency lack scientific evidence. At the same time, energy efficiency is becoming a crucial requirement for cloud service provisioning, as energy costs significantly contribute to the Total Cost of Ownership (TCO) of a data center. In this paper, we present the results of a systematic literature review that investigates cloud software architectures addressing energy efficiency as a primary concern. The aim is to provide an analysis of the state-of-the-art in the field of energy-efficient software architectures

    Green Architectural Tactics for the Cloud

    Get PDF
    Energy efficiency is a primary concern for the ICT sector. In particular, the widespread adoption of cloud computing technologies has drawn attention to the massive energy consumption of data centers. Although hardware constantly improves with respect to energy efficiency, this should also be a main concern forsoftware. In previous work we analyzed the literature and elicited a set of techniques for addressing energy efficiency in cloud-based software architectures. In this work we codified these techniques in the form of Green Architectural Tactics. These tactics will help architects extend their design reasoning towards energy efficiencyand to apply reusable solutions for greener software

    Fronthaul-Constrained Cloud Radio Access Networks: Insights and Challenges

    Full text link
    As a promising paradigm for fifth generation (5G) wireless communication systems, cloud radio access networks (C-RANs) have been shown to reduce both capital and operating expenditures, as well as to provide high spectral efficiency (SE) and energy efficiency (EE). The fronthaul in such networks, defined as the transmission link between a baseband unit (BBU) and a remote radio head (RRH), requires high capacity, but is often constrained. This article comprehensively surveys recent advances in fronthaul-constrained C-RANs, including system architectures and key techniques. In particular, key techniques for alleviating the impact of constrained fronthaul on SE/EE and quality of service for users, including compression and quantization, large-scale coordinated processing and clustering, and resource allocation optimization, are discussed. Open issues in terms of software-defined networking, network function virtualization, and partial centralization are also identified.Comment: 5 Figures, accepted by IEEE Wireless Communications. arXiv admin note: text overlap with arXiv:1407.3855 by other author

    Energy challenges for ICT

    Get PDF
    The energy consumption from the expanding use of information and communications technology (ICT) is unsustainable with present drivers, and it will impact heavily on the future climate change. However, ICT devices have the potential to contribute signi - cantly to the reduction of CO2 emission and enhance resource e ciency in other sectors, e.g., transportation (through intelligent transportation and advanced driver assistance systems and self-driving vehicles), heating (through smart building control), and manu- facturing (through digital automation based on smart autonomous sensors). To address the energy sustainability of ICT and capture the full potential of ICT in resource e - ciency, a multidisciplinary ICT-energy community needs to be brought together cover- ing devices, microarchitectures, ultra large-scale integration (ULSI), high-performance computing (HPC), energy harvesting, energy storage, system design, embedded sys- tems, e cient electronics, static analysis, and computation. In this chapter, we introduce challenges and opportunities in this emerging eld and a common framework to strive towards energy-sustainable ICT

    Next Generation Cloud Computing: New Trends and Research Directions

    Get PDF
    The landscape of cloud computing has significantly changed over the last decade. Not only have more providers and service offerings crowded the space, but also cloud infrastructure that was traditionally limited to single provider data centers is now evolving. In this paper, we firstly discuss the changing cloud infrastructure and consider the use of infrastructure from multiple providers and the benefit of decentralising computing away from data centers. These trends have resulted in the need for a variety of new computing architectures that will be offered by future cloud infrastructure. These architectures are anticipated to impact areas, such as connecting people and devices, data-intensive computing, the service space and self-learning systems. Finally, we lay out a roadmap of challenges that will need to be addressed for realising the potential of next generation cloud systems.Comment: Accepted to Future Generation Computer Systems, 07 September 201
    • …
    corecore