177 research outputs found

    Energy Management in LTE Networks

    Get PDF
    Wireless cellular networks have seen dramatic growth in number of mobile users. As a result, data requirements, and hence the base-station power consumption has increased significantly. It in turn adds to the operational expenditures and also causes global warming. The base station power consumption in long-term evolution (LTE) has, therefore, become a major challenge for vendors to stay green and profitable in competitive cellular industry. It necessitates novel methods to devise energy efficient communication in LTE. Importance of the topic has attracted huge research interests worldwide. Energy saving (ES) approaches proposed in the literature can be broadly classified in categories of energy efficient resource allocation, load balancing, carrier aggregation, and bandwidth expansion. Each of these methods has its own pros and cons leading to a tradeoff between ES and other performance metrics resulting into open research questions. This paper discusses various ES techniques for the LTE systems and critically analyses their usability through a comprehensive comparative study

    Increased energy efficiency in LTE networks through reduced early handover

    Get PDF
    “A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Doctor of Philosophy”.Long Term Evolution (LTE) is enormously adopted by several mobile operators and has been introduced as a solution to fulfil ever-growing Users (UEs) data requirements in cellular networks. Enlarged data demands engage resource blocks over prolong time interval thus results into more dynamic power consumption at downlink in Basestation. Therefore, realisation of UEs requests come at the cost of increased power consumption which directly affects operator operational expenditures. Moreover, it also contributes in increased CO2 emissions thus leading towards Global Warming. According to research, Global Information and Communication Technology (ICT) systems consume approximately 1200 to 1800 Terawatts per hour of electricity annually. Importantly mobile communication industry is accountable for more than one third of this power consumption in ICT due to increased data requirements, number of UEs and coverage area. Applying these values to global warming, telecommunication is responsible for 0.3 to 0.4 percent of worldwide CO2 emissions. Moreover, user data volume is expected to increase by a factor of 10 every five years which results in 16 to 20 percent increase in associated energy consumption which directly effects our environment by enlarged global warming. This research work focuses on the importance of energy saving in LTE and initially propose bandwidth expansion based energy saving scheme which combines two resource blocks together to form single super RB, thereby resulting in reduced Physical Downlink Control Channel Overhead (PDCCH). Thus, decreased PDCCH overhead helps in reduced dynamic power consumption up to 28 percent. Subsequently, novel reduced early handover (REHO) based idea is proposed and combined with bandwidth expansion to form enhanced energy ii saving scheme. System level simulations are performed to investigate the performance of REHO scheme; it was found that reduced early handover provided around 35% improved energy saving while compared to LTE standard in 3rd Generation Partnership Project (3GPP) based scenario. Since there is a direct relationship between energy consumption, CO2 emissions and vendors operational expenditure (OPEX); due to reduced power consumption and increased energy efficiency, REHO subsequently proven to be a step towards greener communication with lesser CO2 footprint and reduced operational expenditure values. The main idea of REHO lies in the fact that it initiate handovers earlier and turn off freed resource blocks as compare to LTE standard. Therefore, the time difference (Transmission Time Intervals) between REHO based early handover and LTE standard handover is a key component for energy saving achieved, which is estimated through axiom of Euclidean geometry. Moreover, overall system efficiency is investigated through the analysis of numerous performance related parameters in REHO and LTE standard. This led to a key finding being made to guide the vendors about the choice of energy saving in relation to radio link failure and other important parameters

    Energy-Efficient Solutions For Green Mobile Networks

    Get PDF

    Efficient energy management in ultra-dense wireless networks

    Get PDF
    The increase in demand for more network capacity has led to the evolution of wireless networks from being largely Heterogeneous (Het-Nets) to the now existing Ultra-dense (UDNs). In UDNs, small cells are densely deployed with the goal of shortening the physical distance between the base stations (BSs) and the UEs, so as to support more user equipment (UEs) at peak times while ensuring high data rates. Compared to Het-Nets, Ultra-dense networks (UDNs) have many advantages. These include, more network capacity, higher flexibility to routine configurations, and more suitability to achieve load-balancing, hence, fewer blind spots as well as lower call blocking probability. It should be noted that, in practice, due to the high density of deployed small cells in Ultra-Dense Networks, a number of issues, or rather concerns, come with this evolution from Het-Nets. Among these issues include problems with efficient radio resource management, user cell association, inter- and intra-cell interference management and, last but not least, efficient energy consumption. Some of these issues which impact the overall network efficiency are largely due to the use of obsolete algorithms, especially those whose resource allocation is based solely on received signal power (RSSP). In this paper, the focus is solely on the efficient energy management dilemma and how to optimally reduce the overall network energy consumption. Through an extensive literature review, a detailed report into the growing concern of efficient energy management in UDNs is provided in Chapter 2. The literature review report highlights the classification as well as the evolution of some of the Mobile Wireless Technologies and Mobile Wireless Networks in general. The literature review report provides reasons as to why the energy consumption issue has become a very serious concern in UltraDense networks as well as the various techniques and measures taken to mitigate this. It is shown that, due to the increasing Mobile Wireless Systems’ carbon footprint which carries serious negative environmental impact, and the general need to lower operating costs by the network operators, the management of energy consumption increases in priority. By using the architecture of a Fourth Generation Long Term Evolution (4G-LTE) UltraDense Network, the report further shows that more than 65% of the overall energy consumption is by the access network and base stations in particular. This phenomenon explains why most attention in energy efficiency management in UDNs is largely centred on reducing the energy consumption of the deployed base stations more than any other network components like the data servers or backhauling features used. Furthermore, the report also provides detailed information on the methods/techniques, their classification, implementation, as well as a critical analysis of the said implementations in literature. This study proposes a sub-optimal algorithm and Distributed Cell Resource Allocation with a Base Station On/Off scheme that aims at reducing the overall base station power consumption in UDNs, while ensuring that the overall Quality of Service (QoS) for each User Equipment (UE) as specified in its service class is met. The modeling of the system model used and hence formulation of the Network Energy Efficiency (NEE) optimization problem is done viii using stochastic geometry. The network model comprises both evolved Node B (eNB) type macro and small cells operating on different frequency bands as well as taking into account factors that impact NEE such as UE mobility, UE spatial distribution and small cells spatial distribution. The channel model takes into account signal interference from all base stations, path loss, fading, log normal shadowing, modulation and coding schemes used on each UE’s communication channels when computing throughout. The power consumption model used takes into account both static (site cooling, circuit power) and active (transmission or load based) base station power consumption. The formulation of the NEE optimization problem takes into consideration the user’s Quality-of-service (QoS), inter-cell interference, as well as each user’s spectral efficiency and coverage/success probability. The formulated NEE optimization problem is of type Nondeterministic Polynomial time (NP)-hard, due to the user-cell association. The proposed solution to the formulated optimization problem makes use of constraint relaxation to transform the NP-hard problem into a more solvable, convex and linear optimization one. This, combined with Lagrangian dual decomposition, is used to create a distributed solution. After cellassociation and resource allocation phases, the proposed solution in order to further reduce power consumption performs Cell On/Off. Then, by using the computer simulation tools/environments, the “Distributed Resource Allocation with Cell On/Off” scheme’s performance, in comparison to four other resource allocation schemes, is analysed and evaluated given a number of different network scenarios. Finally, the statistical and mathematical results generated through the simulations indicate that the proposed scheme is the closest in NEE performance to the Exhaustive Search algorithm, and hence superior to the other sub-optimal algorithms it is compared to

    Energy efficiency perspectives of PMR networks

    Get PDF
    Recently, the concern about energy efficiency in wireless communications has been growing rapidly. Manufacturers and researchers have developed innovative solutions, highlighting the benefits in reducing operational expenditures (OPEX) and carbon footprint. Professional Mobile Radio (PMR) systems, like Terrestrial Trunked Radio (TETRA), have been designed to provide voice and data services to professional users. The energy consumption is one of the critical aspects of PMR broadband solutions and a major constraint for PMR services. The future convergence of PMR to the LTE system introduces a new topic in the research discussion about the energy efficiency of wireless systems. This paper focuses on the feasibility of energy efficient solutions for current and potentially future PMR networks, by providing a mathematical formulation of power consumption in TETRA base stations and assessing possible business models and energy saving solutions for enhanced mission-critical operations. The energy efficiency evaluation has been performed by taking into account the traffic load of a deployed TETRA regional network: in the considered network scenario with 150 base stations, significant OPEX savings up to 70 thousand Euros per year of operation are achieved. Moreover, the proposed solutions allow for saving more than 1 ton of CO 2 per year

    Interference Coordination for 5G New Radio

    Get PDF

    Enhancing the energy efficiency of radio base stations

    Get PDF
    This thesis is concerned with the energy efficiency of cellular networks. It studies the dominant power consumer in future cellular networks, the Long Term Evolution (LTE) radio Base Station (BS), and proposes mechanisms that enhance the BS energy efficiency by reducing its power consumption under target rate constraints. These mechanisms trade spare capacity for power saving. First, the thesis describes how much power individual components of a BS consume and what parameters affect this consumption based on third party experimental data. These individual models are joined into a component power model for an entire BS. The component model is an essential step in analysis but is too complex for many applications. It is therefore abstracted into a much simpler parameterized model to reduce its complexity. The parameterized model is further simplified into an affine model which can be applied in power minimization. Second, Power Control (PC) and Discontinuous Transmission (DTX) are identified as promising power-saving Radio Resource Management (RRM) mechanisms and applied to multi-user downlink transmission. PC reduces the power consumption of the Power Amplifier (PA) and is found to be most effective at high traffic loads. DTX mostly reduces the power consumption of the Baseband (BB) unit while interrupting transmission and is better applied in low traffic loads. Joint optimization of these two techniques is found to enable additional power-saving at medium traffic loads and to be a convex problem which can be solved efficiently. The convex problem is extended to provide a comprehensive power-saving Orthogonal Frequency Division Multiple Access (OFDMA) frame resource scheduler. The proposed scheduler is shown to reduce power consumption by 25-40% in computer simulations, depending on the traffic load. Finally, the thesis investigates the influence of interference on power consumption in a network of multiple power-saving BSs. It discusses three popular alternative distributed uncoordinated methods which align DTX mode between neighbouring BSs. To address drawbacks of these three, a fourth memory-based DTX alignment method is proposed. It decreases power consumption by up to 40% and retransmission probability by around 20%, depending on the traffic load
    • 

    corecore