2 research outputs found

    Cyber-Physical System for Energy-Efficient Stadium Operation: Methodology and Experimental Validation

    Full text link
    The environmental impacts of medium to large scale buildings receive substantial attention in research, industry, and media. This paper studies the energy savings potential of a commercial soccer stadium during day-to-day operation. Buildings of this kind are characterized by special purpose system installations like grass heating systems and by event-driven usage patterns. This work presents a methodology to holistically analyze the stadiums characteristics and integrate its existing instrumentation into a Cyber-Physical System, enabling to deploy different control strategies flexibly. In total, seven different strategies for controlling the studied stadiums grass heating system are developed and tested in operation. Experiments in winter season 2014/2015 validated the strategies impacts within the real operational setup of the Commerzbank Arena, Frankfurt, Germany. With 95% confidence, these experiments saved up to 66% of median daily weather-normalized energy consumption. Extrapolated to an average heating season, this corresponds to savings of 775 MWh and 148 t of CO2 emissions. In winter 2015/2016 an additional predictive nighttime heating experiment targeted lower temperatures, which increased the savings to up to 85%, equivalent to 1 GWh (197 t CO2) in an average winter. Beyond achieving significant energy savings, the different control strategies also met the target temperature levels to the satisfaction of the stadiums operational staff. While the case study constitutes a significant part, the discussions dedicated to the transferability of this work to other stadiums and other building types show that the concepts and the approach are of general nature. Furthermore, this work demonstrates the first successful application of Deep Belief Networks to regress and predict the thermal evolution of building systems

    Smart buildings as Cyber-Physical Systems: Data-driven predictive control strategies for energy efficiency

    Full text link
    Due to its significant contribution to global energy usage and the associated greenhouse gas emissions, existing building stock's energy efficiency must improve. Predictive building control promises to contribute to that by increasing the efficiency of building operations. Predictive control complements other means to increase performance such as refurbishments as well as modernizations of systems. This survey reviews recent works and contextualizes these with the current state of the art of interrelated topics in data handling, building automation, distributed control, and semantics. The comprehensive overview leads to seven research questions guiding future research directions.Comment: 45 page
    corecore