5 research outputs found

    Mechanism design for aggregating energy consumption and quality of service in speed scaling scheduling

    Full text link
    We consider a strategic game, where players submit jobs to a machine that executes all jobs in a way that minimizes energy while respecting the given deadlines. The energy consumption is then charged to the players in some way. Each player wants to minimize the sum of that charge and of their job's deadline multiplied by a priority weight. Two charging schemes are studied, the proportional cost share which does not always admit pure Nash equilibria, and the marginal cost share, which does always admit pure Nash equilibria, at the price of overcharging by a constant factor

    Energy Efficient Scheduling of MapReduce Jobs

    Full text link
    MapReduce is emerged as a prominent programming model for data-intensive computation. In this work, we study power-aware MapReduce scheduling in the speed scaling setting first introduced by Yao et al. [FOCS 1995]. We focus on the minimization of the total weighted completion time of a set of MapReduce jobs under a given budget of energy. Using a linear programming relaxation of our problem, we derive a polynomial time constant-factor approximation algorithm. We also propose a convex programming formulation that we combine with standard list scheduling policies, and we evaluate their performance using simulations.Comment: 22 page

    Efficient Algorithms for Unrelated Parallel Machine Scheduling Considering Time of Use Pricing and Demand Charges

    Get PDF
    There is an ever-increasing focus on sustainability and energy consumption worldwide. Manufacturing is one of the major areas where energy reduction is not only environmentally beneficial, but also incredibly financially beneficial. These industrial consumers pay for their electricity according to prices that fluctuate throughout the day. These price fluctuations are in place to shift consumption away from “peak” times, when electricity is in the highest demand. In addition to this consumption cost, industrial consumers are charged according to their highest level of demand in a given window of time in the form of demand charges. This paper presents multiple solution methods to solve a parallel machine shop scheduling problem to minimize the total energy cost of the production schedule under Time of Use (TOU) and demand charge pricing. The greedy heuristic and genetic algorithm developed are designed to provide efficient solutions to this problem. The results of these methods are compared to a previously developed integer program (IP) solved using CPLEX with respect to the quality of the solution and the computational time required to solve it. Findings of these tests show that the greedy heuristic handles the test problems with only a small optimality gap to the genetic algorithm and optimal IP solution. The largest test problems could not be solved by the genetic algorithm in the provided time period due to difficulty generating an initial solution population. However, when successful the genetic algorithm performed comparably to the CPLEX solver in terms solution quality yet provided faster solve times

    Energy Aware Scheduling for Unrelated Parallel Machines

    No full text
    International audienceWe consider the problem of energy aware scheduling of a set of jobs on a set of unrelated parallel machines with the average weighted completion time plus energy objective. The processing time and the energy consumption of the jobs are machine and speed dependent. Also, every job is subject to a machine-dependent release date. Firstly, we aim to find a non-preemptive schedule of the jobs minimizing the average weighted completion time plus energy, and we propose a randomized approximation algorithm that we derandomize obtaining a deterministic approximation algorithm. We then consider the budget variant of the problem where the objective is to minimize the average completion time while the total energy consumption does not exceed a given budget
    corecore