3 research outputs found

    Endotracheal Tube Detection and Segmentation in Chest Radiographs using Synthetic Data

    Full text link
    Chest radiographs are frequently used to verify the correct intubation of patients in the emergency room. Fast and accurate identification and localization of the endotracheal (ET) tube is critical for the patient. In this study we propose a novel automated deep learning scheme for accurate detection and segmentation of the ET tubes. Development of automatic systems using deep learning networks for classification and segmentation require large annotated data which is not always available. Here we present an approach for synthesizing ET tubes in real X-ray images. We suggest a method for training the network, first with synthetic data and then with real X-ray images in a fine-tuning phase, which allows the network to train on thousands of cases without annotating any data. The proposed method was tested on 477 real chest radiographs from a public dataset and reached AUC of 0.99 in classifying the presence vs. absence of the ET tube, along with outputting high quality ET tube segmentation maps.Comment: Accepted to MICCAI 201

    Automatic classification of multiple catheters in neonatal radiographs with deep learning

    Full text link
    We develop and evaluate a deep learning algorithm to classify multiple catheters on neonatal chest and abdominal radiographs. A convolutional neural network (CNN) was trained using a dataset of 777 neonatal chest and abdominal radiographs, with a split of 81%-9%-10% for training-validation-testing, respectively. We employed ResNet-50 (a CNN), pre-trained on ImageNet. Ground truth labelling was limited to tagging each image to indicate the presence or absence of endotracheal tubes (ETTs), nasogastric tubes (NGTs), and umbilical arterial and venous catheters (UACs, UVCs). The data set included 561 images containing 2 or more catheters, 167 images with only one, and 49 with none. Performance was measured with average precision (AP), calculated from the area under the precision-recall curve. On our test data, the algorithm achieved an overall AP (95% confidence interval) of 0.977 (0.679-0.999) for NGTs, 0.989 (0.751-1.000) for ETTs, 0.979 (0.873-0.997) for UACs, and 0.937 (0.785-0.984) for UVCs. Performance was similar for the set of 58 test images consisting of 2 or more catheters, with an AP of 0.975 (0.255-1.000) for NGTs, 0.997 (0.009-1.000) for ETTs, 0.981 (0.797-0.998) for UACs, and 0.937 (0.689-0.990) for UVCs. Our network thus achieves strong performance in the simultaneous detection of these four catheter types. Radiologists may use such an algorithm as a time-saving mechanism to automate reporting of catheters on radiographs.Comment: 10 pages, 5 figures (+1 suppl.), 2 tables (+2 suppl.). Submitted to Journal of Digital Imagin

    DeepWL: Robust EPID based Winston-Lutz Analysis using Deep Learning and Synthetic Image Generation

    Full text link
    Radiation therapy requires clinical linear accelerators to be mechanically and dosimetrically calibrated to a high standard. One important quality assurance test is the Winston-Lutz test which localizes the radiation isocentre of the linac. In the current work we demonstrate a novel method of analysing EPID based Winston-Lutz QA images using a deep learning model trained only on synthetic image data.In addition, we propose a novel method of generating the synthetic WL images and associated ground-truth masks using an optical ray-tracing engine to fake mega-voltage EPID images. The model called DeepWL was trained on 1500 synthetic WL images using data augmentation techniques for 180 epochs. The model was built using Keras with a TensorFlow backend on an Intel Core i5 6500T CPU and trained in approximately 15 hours. DeepWL was shown to produce ball bearing and multi-leaf collimator field segmentations with a mean dice coefficient of 0.964 and 0.994 respectively on previously unseen synthetic testing data. When DeepWL was applied to WL data measured on an EPID, the predicted mean displacements were shown to be statistically similar to the Canny Edge detection method. However, the DeepWL predictions for the ball bearing locations were shown to correlate better with manual annotations compared with the Canny edge detection algorithm. DeepWL was demonstrated to analyse Winston-Lutz images with accuracy suitable for routine linac quality assurance with some statistical evidence that it may outperform Canny Edge detection methods in terms of segmentation robustness and the resultant displacement predictions.Comment: 21 pages, 12 figures, 3 table
    corecore