52,694 research outputs found

    Imitation Learning for Vision-based Lane Keeping Assistance

    Full text link
    This paper aims to investigate direct imitation learning from human drivers for the task of lane keeping assistance in highway and country roads using grayscale images from a single front view camera. The employed method utilizes convolutional neural networks (CNN) to act as a policy that is driving a vehicle. The policy is successfully learned via imitation learning using real-world data collected from human drivers and is evaluated in closed-loop simulated environments, demonstrating good driving behaviour and a robustness for domain changes. Evaluation is based on two proposed performance metrics measuring how well the vehicle is positioned in a lane and the smoothness of the driven trajectory.Comment: International Conference on Intelligent Transportation Systems (ITSC

    Controlling Steering Angle for Cooperative Self-driving Vehicles utilizing CNN and LSTM-based Deep Networks

    Full text link
    A fundamental challenge in autonomous vehicles is adjusting the steering angle at different road conditions. Recent state-of-the-art solutions addressing this challenge include deep learning techniques as they provide end-to-end solution to predict steering angles directly from the raw input images with higher accuracy. Most of these works ignore the temporal dependencies between the image frames. In this paper, we tackle the problem of utilizing multiple sets of images shared between two autonomous vehicles to improve the accuracy of controlling the steering angle by considering the temporal dependencies between the image frames. This problem has not been studied in the literature widely. We present and study a new deep architecture to predict the steering angle automatically by using Long-Short-Term-Memory (LSTM) in our deep architecture. Our deep architecture is an end-to-end network that utilizes CNN, LSTM and fully connected (FC) layers and it uses both present and futures images (shared by a vehicle ahead via Vehicle-to-Vehicle (V2V) communication) as input to control the steering angle. Our model demonstrates the lowest error when compared to the other existing approaches in the literature.Comment: Accepted in IV 2019, 6 pages, 9 figure
    • …
    corecore