3 research outputs found

    End-to-end informed VM selection in compute clouds

    Full text link
    The selection of resources, particularly VMs, in current public IaaS clouds is usually done in a blind fashion, as cloud users do not have much information about resource consumption by co-tenant third-party tasks. In particular, communication patterns can play a significant part in cloud application performance and responsiveness, specially in the case of novel latencysensitive applications, increasingly common in today’s clouds. Thus, herein we propose an end-to-end approach to the VM allocation problem using policies based uniquely on round-trip time measurements between VMs. Those become part of a userlevel ‘Recommender Service’ that receives VM allocation requests with certain network-related demands and matches them to a suitable subset of VMs available to the user within the cloud. We propose and implement end-to-end algorithms for VM selection that cover desirable profiles of communications between VMs in distributed applications in a cloud setting, such as profiles with prevailing pair-wise, hub-and-spokes, or clustered communication patterns between constituent VMs. We quantify the expected benefits from deploying our Recommender Service by comparing our informed VM allocation approaches to conventional, random allocation methods, based on real measurements of latencies between Amazon EC2 instances. We also show that our approach is completely independent from cloud architecture details, is adaptable to different types of applications and workloads, and is lightweight and transparent to cloud providers.This work is supported in part by the National Science Foundation under grant CNS-0963974

    A TIERED RECOMMENDER SYSTEM FOR COST-EFFECTIVE CLOUD INSTANCE SELECTION

    Get PDF
    Cloud computing has greatly impacted the scientific community and the end users. By leveraging cloud computing, small research institutions and undergraduate colleges are able to alleviate costs and achieve research goals without purchasing and maintaining all the hardware and software. In addition, cloud computing allows researchers to access resources as their teams require and allows real-time collaboration with team members across the globe. Nowadays however, users are easily overwhelmed by the wide range of cloud servers and instances. Due to differences between the cloud server platforms and between instances within the platform, users find it difficult to identify the right instance match for their application. Therefore, we propose the A2Cloud-Hierarchy (A2Cloud-H) framework that recommends Cloud instances to users for high-performance scientific computing. The framework comprises four components: training data collection, supervised learning (SL) module, unsupervised learning (USL) module, and a decision module. The training database comprise testing traces of previous application and Cloud instances; these are contributed by the scientific community. The SL module contains three popular supervised learning modules: logistic regression, support vector machine and random forest, which train using the database to qualitatively assess the instance performance for the target application. The USL module includes three collaborative filtering methods: application-based, instance-based and rank-based, which use the database to estimate the instances’ performance ratings for the target application. The decision module comprises multiple tiers of analytic hierarchy processing, which consolidate the instance recommendation from the SL and USL modules into a final instance recommendation. The model is trained and validated by 8 real-world applications on 20 Cloud instances, yielding more than 90% modeling accuracy. The recommendation and integration method proposed in this thesis can help promote a better cloud computing environment for both end-users and cloud server platforms

    End-to-end informed VM selection in compute clouds

    No full text
    corecore