4 research outputs found

    Comparative Reliability Analysis between Horizontal-Vertical-Diagonal Code and Code with Crosstalk Avoidance and Error Correction for NoC Interconnects

    Get PDF
    Ensuring reliable data transmission in Network on Chip (NoC) is one of the most challenging tasks, especially in noisy environments. As crosstalk, interference, and radiation were increased with manufacturers' increasing tendency to reduce the area, increase the frequencies, and reduce the voltages.  So many Error Control Codes (ECC) were proposed with different error detection and correction capacities and various degrees of complexity. Code with Crosstalk Avoidance and Error Correction (CCAEC) for network-on-chip interconnects uses simple parity check bits as the main technique to get high error correction capacity. Per this work, this coding scheme corrects up to 12 random errors, representing a high correction capacity compared with many other code schemes. This candidate has high correction capability but with a high codeword size. In this work, the CCAEC code is compared to another well-known code scheme called Horizontal-Vertical-Diagonal (HVD) error detecting and correcting code through reliability analysis by deriving a new accurate mathematical model for the probability of residual error Pres for both code schemes and confirming it by simulation results for both schemes. The results showed that the HVD code could correct all single, double, and triple errors and failed to correct only 3.3 % of states of quadric errors. In comparison, the CCAEC code can correct a single error and fails in 1.5%, 7.2%, and 16.4% cases of double, triple, and quadric errors, respectively. As a result, the HVD has better reliability than CCAEC and has lower overhead; making it a promising coding scheme to handle the reliability issues for NoC

    End-to-end error correction and online diagnosis for on-chip networks

    No full text
    Abstract In an on-chip network, roughly 80 % of the communication faults are transient [9]. Different fault tolerance approaches such as Forward Error Control (FEC), Automatic Repeat Query (ARQ), and multi-path routing have been used and compared in literature for reliable on-chip transmission [15-17]. These approaches tolerate transient faults, but they become ineffective in the presence of permanent faults. Permanent faults on wires occur both during manufacturing and in the field, causing yield degradation and service costs respectively. The overall system cost can be reduced by adding some spare wires per each link of the network to replace the defective wires [15,18]. Nevertheless, an in-field diagnosis mechanism is required to locate the defective wire and initiates the wire replacement. We propose a comprehensive solution for end-to-end (e2e) error correction and online defect diagnosis for on-chip networks. For e2e error correction, we propose an interleaved error-locality-aware code that efficiently corrects both random and burst errors. We demonstrate that for 64-bit wide network links, interleaving four of the proposed code, 2G4L(26,16), each of which supports 16-bit data, can correct as many as two random errors or 16 adjacent errors. In order to maintain the error correction capability of the Error Correcting Code (ECC) for transient and intermittent errors, we further propose an e2e data gathering and online diagnosis approach that locates the defective wires and replaces them with the spare wires embedded in the network. Our analytical and experimental studies show that under heavy noise, high escape rate, uncertainty about routing, and many other harmful effects, the diagnostic data collected by the proposed approach are accurate enough for the purpose of passive diagnosis. 1

    Cross-layer fault tolerance in networks-on-chip

    Get PDF
    The design of Networks-on-Chip follows the Open Systems Interconnection (OSI) reference model. The OSI model defines strictly separated network abstraction layers and specifies their functionality. Each layer has layer-specific information about the network that can be exclusively accessed by the methods of the layer. Adhering to the strict layer boundaries, however, leads to methods of the individual layers working in isolation from each other. This lack of interaction between methods is disadvantageous for fault diagnosis and fault tolerance in Networks-on-Chip as it results in solutions that have a high effort in terms of the time and implementation costs required to deal with faults. For Networks-on-Chip cross-layer design is considered as a promising method to remedy these shortcomings. It removes the strict layer boundaries by the exchange of information between layers. This interaction enables methods of different layers to cooperate, and thus, deal with faults more efficiently. Furthermore, providing lower layer information to the software allows hardware methods to be implemented as software tasks resulting in a reduction of the hardware complexity. The goal of this dissertation is the investigation of cross-layer design for fault diagnosis and fault tolerance in Networks-on-Chip. For fault diagnosis a scheme is proposed that allows the interaction of protocol-based diagnosis of the transport layer with functional diagnosis of the network layer and structural diagnosis of the physical layer by exchanging diagnostic information. The techniques use this information for optimizing their own diagnosis process. For protocol-based diagnosis on the transport layer, a diagnosis protocol is proposed that is able to locate faulty links, switches, and crossbar connections. For this purpose, the technique utilizes available information of lower layers. As proof of concept for the proposed interaction scheme, the diagnosis protocol is combined with a functional and a structural diagnosis approach and the performance and diagnosis quality of the resulting combinations is investigated. The results show that the combinations of the diagnosis protocol with one of the lower layer techniques have a considerably reduced fault localization latency compared to the functional and the structural standalone techniques. This reduction, however, comes at the expense of a reduced diagnosis quality. In terms of fault tolerance, the focus of this dissertation is on the design and implementation of cross-layer approaches utilizing software methods to provide fault tolerance for network layer routings. Two approaches for different routings are presented. The requirements to provide information of lower layers to the software using the available Network-on-Chip resources and interfaces for data communication are discussed. The concepts of two mechanisms of the data link layer are presented for converting status information into communicable units and for preventing communication resources from being blocked. In the first approach, software-based packet rerouting is proposed. By incorporating information from different layers, this approach provides fault tolerance for deterministic network layer routings. As specialization of software-based rerouting, dimension-order XY rerouting is presented. In the second approach, a reconfigurable routing for Networks-on-Chip with logical hierarchy is proposed in which cross-layer interaction is used to enable hierarchical units to manage themselves autonomously and to reconfigure the routing. Both approaches are evaluated regarding their performance as well as their implementation costs. In a final study, the cross-layer diagnosis technique and cross-layer fault tolerance approaches are combined. The information obtained by the diagnosis technique is used by the fault tolerance approaches for packet rerouting or for routing reconfiguration. The combinations are evaluated regarding their impact on Networks-on-Chip performance. The results show that the crosslayer information exchange with software has a considerable impact on performance when the amount of information becomes too large. In case of crosslayer diagnosis, however, the impact on Networks-on-Chip performance is significantly lower compared to functional and structural diagnosis

    Fehlertolerante Mehrkernprozessoren fĂĽr gemischt-kritische Echtzeitsysteme

    Get PDF
    Current and future computing systems must be appropriately designed to cope with random hardware faults in order to provide a dependable service and correct functionality. Dependability has many facets to be addressed when designing a system and that is specially challenging in mixed-critical real-time systems, where safety standards play an important role and where responding in time can be as important as responding correctly or even responding at all. The thesis addresses the dependability of mixed-critical real-time systems, considering three important requirements: integrity, resilience and real-time. More specifically, it looks into the architectural and performance aspects of achieving dependability, concentrating its scope on error detection and handling in hardware -- more specifically in the Network-on-Chip (NoC), the backbone of modern MPSoC -- and on the performance of error handling and recovery in software. The thesis starts by looking at the impacts of random hardware faults on the NoC and on the system, with special focus on soft errors. Then, it addresses the uncovered weaknesses in the NoC by proposing a resilient NoC for mixed-critical real-time systems that is able to provide a highly reliable service with transparent protection for the applications. Formal communication time analysis is provided with common ARQ protocols modeled for NoCs and including a novel ARQ-based protocol optimized for DMAs. After addressing the efficient use of ARQ-based protocols in NoCs, the thesis proposes the Advanced Integrity Q-service (AIQ), a low-overhead mechanism to achieve integrity and real-time guarantees of NoC transactions on an End-to-End (E2E) basis. Inspired by transactions in distributed systems, the mechanism differs from the previous approach in that it does not provide error recovery in hardware but delegates the task to software, making use of existing functionality in cross-layer fault-tolerance solutions. Finally, the thesis addresses error handling in software as seen in cross-layer approaches. It addresses the performance of replicated software execution in many-core platforms. Replicated software execution provides protection to the system against random hardware faults. It relies on hardware-supported error detection and error handling in software. The replica-aware co-scheduling is proposed to achieve high performance with replicated execution, which is not possible with standard real-time schedulers.Um einen zuverlässigen Betrieb und korrekte Funktionalität zu gewährleisten, müssen aktuelle und zukünftige Computersysteme so ausgelegt werden, dass sie mit diesen Fehlern umgehen können. Zuverlässigkeit hat viele Aspekte, die bei der Entwicklung eines Systems berücksichtigt werden müssen. Das gilt insbesondere für Echtzeitsysteme mit gemischter Kritikalität, bei denen Sicherheitsstandards, die ein korrektes und rechtzeitiges Verhalten fordern, eine wichtige Rolle spielen. Diese Dissertation befasst sich mit der Zuverlässigkeit von gemischt-kritischen Echtzeitsystemen unter Berücksichtigung von drei wichtigen Anforderungen: Integrität, Resilienz und Echtzeit. Genauer gesagt, behandelt sie Architektur- und Leistungsaspekte die notwendig sind um Zuverlässigkeit zu erreichen, wobei der Schwerpunkt auf der Fehlererkennung und -behandlung in der Hardware – genauer gesagt im Network-on-Chip (NoC), dem Rückgrat des modernen MPSoC – und auf der Leistung der Fehlerbehandlung und -behebung in der Software liegt. Die Arbeit beginnt mit der Untersuchung der Auswirkung von zufälligen Hardwarefehlern auf das NoC und das System, wobei der Schwerpunkt auf weichen Fehler (soft errors) liegt. Anschließend werden die aufgedeckten Schwachstellen im NoC behoben, indem ein widerstandsfähiges NoC für gemischt-kritische Echtzeitsysteme vorgeschlagen wird, das in der Lage ist, einen höchst zuverlässigen Betrieb mit transparentem Schutz für die Anwendungen zu bieten. Nach der Auseinandersetzung mit der effizienten Nutzung von ARQ-basierten Protokolle in NoCs, wird der Advanced Integrity Q-Service (AIQ) vorgestellt, der ein Mechanismus mit geringem Overhead ist, um Integrität und Echtzeit-Garantien von NoC-Transaktionen auf Ende-zu-Ende (E2E)-Basis zu erreichen. Inspiriert von Transaktionen in verteilten Systemen unterscheidet sich der Mechanismus vom bisherigen Konzept dadurch, dass er keine Fehlerbehebung in der Hardware vorsieht, sondern diese Aufgabe an die Software delegiert. Schließlich befasst sich die Dissertation mit der Fehlerbehandlung in Software, wie sie in schichtübergreifenden Methoden zu sehen ist. Sie behandelt die Leistung der replizierten Software-Ausführung in Many-Core-Plattformen. Es setzt auf hardwaregestützte Fehlererkennung und Fehlerbehandlung in der Software. Das Replika-bewusste Co-Scheduling wird vorgeschlagen, um eine hohe Performance bei replizierter Ausführung zu erreichen, was mit Standard-Echtzeit-Schedulern nicht möglich ist
    corecore