3,226,432 research outputs found
End-to-end testing
The principle objective of the kinds of demonstration tests that are discussed is to try to verify whether or not carbon fibers that are released by burning composite parts in an aircraft-fuel fires can produce failures in electrical equipment. A secondary objective discussed is to experimentally validate the analytical models for some of the key elements in the risk analysis. The approach to this demonstration testing is twofold: limited end-to-end test are to be conducted in a shock tube; and planning for some large outdoor burn tests is being done
Results from Solar Reflective Band End-to-End Testing for VIIRS F1 Sensor Using T-SIRCUS
Verification of the Visible Infrared Imager Radiometer Suite (VIIRS) End-to-End (E2E) sensor calibration is highly recommended before launch, to identify any anomalies and to improve our understanding of the sensor on-orbit calibration performance. E2E testing of the Reflective Solar Bands (RSB) calibration cycle was performed pre-launch for the VIIRS Fight 1 (F1) sensor at the Ball Aerospace facility in Boulder CO in March 2010. VIIRS reflective band calibration cycle is very similar to heritage sensor MODIS in that solar illumination, via a diffuser, is used to correct for temporal variations in the instrument responsivity. Monochromatic light from the NIST T-SIRCUS was used to illuminate both the Earth View (EV), via an integrating sphere, and the Solar Diffuser (SD) view, through a collimator. The collimator illumination was cycled through a series of angles intended to simulate the range of possible angles for which solar radiation will be incident on the solar attenuation screen on-orbit. Ideally, the measured instrument responsivity (defined here as the ratio of the detector response to the at-sensor radiance) should be the same whether the EV or SD view is illuminated. The ratio of the measured responsivities was determined at each collimator angle and wavelength. In addition, the Solar Diffuser Stability Monitor (SDSM), a ratioing radiometer designed to track the temporal variation in the SD BRF by direct comparison to solar radiation, was illuminated by the collimator. The measured SDSM ratio was compared to the predicted ratio. An uncertainty analysis was also performed on both the SD and SDSM calibrations
Space Station Technology Summary
The completion of the Space Station Propulsion Advanced Technology Programs established an in-depth data base for the baseline gaseous oxygen/gaseous hydrogen thruster, the waste gas resistojet, and the associated system operations. These efforts included testing of a full end-to-end system at National Aeronautics and Space Administration (NASA)-Marshall Space Flight Center (MSFC) in which oxygen and hydrogen were generated from water by electrolysis at 6.89 MPa (1,000 psia), stored and fired through the prototype thruster. Recent end-to-end system tests which generate the oxygen/hydrogen propellants by electrolysis of water at 20.67 MPa (3,000 psia) were completed on the Integrated Propulsion Test Article (IPTA) at NASA-Johnson Space Center (JSC). Resistojet testing has included 10,000 hours of life testing, plume characterization, and electromagnetic interference (EMI) testing. Extensive 25-lbf thruster testing was performed defining operating performance characteristics across the required mixture ratio and thrust level ranges. Life testing has accumulated 27 hours of operation on the prototype thruster. A total of seven injectors and five thrust chambers were fabricated to the same basic design. Five injectors and three thrust chambers designed to incorporate improved life, performance, and producibility characteristics are ready for testing. Five resistojets were fabricated and tested, with modifications made to improve producibility. The lessons learned in the area of producibility for both the O2/H2 thrusters and for the resistojet have resolved critical fabrication issues. The test results indicate that all major technology issues for long life and reliability for space station application were resolved
The development of a questionnaire to assess the attitudes of older people to end-of-life issues (AEOLI)
Objectives: To develop an end-of-life attitudes questionnaire for use in a large community-based sample of older people. Design: Nominal groups and standardization of questions. Participants: Eighteen older people, ten academics and five specialist palliative care health professionals were involved in nominal groups. Thirty older people took part in initial pilot work and a further 50 were involved in reliability testing. Results: A 27-item attitudes of older people to end-of-life issues (AEOLI) questionnaire. Discussion: In modern times, death and dying predominantly occurs among older people and yet we know very little about older people's attitudes to end-of-life care. The AEOLI questionnaire can be used in large scale surveys to elicit attitudes on end-of life issues considered important by older people and health care professionals
Where Are My Intelligent Assistant's Mistakes? A Systematic Testing Approach
Intelligent assistants are handling increasingly critical tasks, but until now, end users have had no way to systematically assess where their assistants make mistakes. For some intelligent assistants, this is a serious problem: if the assistant is doing work that is important, such as assisting with qualitative research or monitoring an elderly parent’s safety, the user may pay a high cost for unnoticed mistakes. This paper addresses the problem with WYSIWYT/ML (What You See Is What You Test for Machine Learning), a human/computer partnership that enables end users to systematically test intelligent assistants. Our empirical evaluation shows that WYSIWYT/ML helped end users find assistants’ mistakes significantly more effectively than ad hoc testing. Not only did it allow users to assess an assistant’s work on an average of 117 predictions in only 10 minutes, it also scaled to a much larger data set, assessing an assistant’s work on 623 out of 1,448 predictions using only the users’ original 10 minutes’ testing effort
Method and apparatus for tensile testing of metal foil
A method for obtaining accurate and reproducible results in the tensile testing of metal foils in tensile testing machines is described. Before the test specimen are placed in the machine, foil side edges are worked until they are parallel and flaw free. The specimen are also aligned between and secured to grip end members. An aligning apparatus employed in the method is comprised of an alignment box with a longitudinal bottom wall and two upright side walls, first and second removable grip end members at each end of the box, and a means for securing the grip end members within the box
Compression test assembly
A compression test assembly is described which prevents buckling of small diameter rigid specimens undergoing compression testing and permits attachment of extensometers for strain measurements. The test specimen is automatically aligned and laterally supported when compressive force is applied to the end caps and transmitted to the test specimen during testing
- …
