33 research outputs found

    SemanticBEVFusion: Rethink LiDAR-Camera Fusion in Unified Bird's-Eye View Representation for 3D Object Detection

    Full text link
    LiDAR and camera are two essential sensors for 3D object detection in autonomous driving. LiDAR provides accurate and reliable 3D geometry information while the camera provides rich texture with color. Despite the increasing popularity of fusing these two complementary sensors, the challenge remains in how to effectively fuse 3D LiDAR point cloud with 2D camera images. Recent methods focus on point-level fusion which paints the LiDAR point cloud with camera features in the perspective view or bird's-eye view (BEV)-level fusion which unifies multi-modality features in the BEV representation. In this paper, we rethink these previous fusion strategies and analyze their information loss and influences on geometric and semantic features. We present SemanticBEVFusion to deeply fuse camera features with LiDAR features in a unified BEV representation while maintaining per-modality strengths for 3D object detection. Our method achieves state-of-the-art performance on the large-scale nuScenes dataset, especially for challenging distant objects. The code will be made publicly available.Comment: The first two authors contributed equally to this wor

    Fully Sparse 3D Object Detection

    Full text link
    As the perception range of LiDAR increases, LiDAR-based 3D object detection becomes a dominant task in the long-range perception task of autonomous driving. The mainstream 3D object detectors usually build dense feature maps in the network backbone and prediction head. However, the computational and spatial costs on the dense feature map are quadratic to the perception range, which makes them hardly scale up to the long-range setting. To enable efficient long-range LiDAR-based object detection, we build a fully sparse 3D object detector (FSD). The computational and spatial cost of FSD is roughly linear to the number of points and independent of the perception range. FSD is built upon the general sparse voxel encoder and a novel sparse instance recognition (SIR) module. SIR first groups the points into instances and then applies instance-wise feature extraction and prediction. In this way, SIR resolves the issue of center feature missing, which hinders the design of the fully sparse architecture for all center-based or anchor-based detectors. Moreover, SIR avoids the time-consuming neighbor queries in previous point-based methods by grouping points into instances. We conduct extensive experiments on the large-scale Waymo Open Dataset to reveal the working mechanism of FSD, and state-of-the-art performance is reported. To demonstrate the superiority of FSD in long-range detection, we also conduct experiments on Argoverse 2 Dataset, which has a much larger perception range (200m200m) than Waymo Open Dataset (75m75m). On such a large perception range, FSD achieves state-of-the-art performance and is 2.4×\times faster than the dense counterpart. Codes will be released at https://github.com/TuSimple/SST.Comment: NeurIPS 202
    corecore