79 research outputs found

    End-to-End Multi-Task Denoising for joint SDR and PESQ Optimization

    Full text link
    Supervised learning based on a deep neural network recently has achieved substantial improvement on speech enhancement. Denoising networks learn mapping from noisy speech to clean one directly, or to a spectrum mask which is the ratio between clean and noisy spectra. In either case, the network is optimized by minimizing mean square error (MSE) between ground-truth labels and time-domain or spectrum output. However, existing schemes have either of two critical issues: spectrum and metric mismatches. The spectrum mismatch is a well known issue that any spectrum modification after short-time Fourier transform (STFT), in general, cannot be fully recovered after inverse short-time Fourier transform (ISTFT). The metric mismatch is that a conventional MSE metric is sub-optimal to maximize our target metrics, signal-to-distortion ratio (SDR) and perceptual evaluation of speech quality (PESQ). This paper presents a new end-to-end denoising framework with the goal of joint SDR and PESQ optimization. First, the network optimization is performed on the time-domain signals after ISTFT to avoid spectrum mismatch. Second, two loss functions which have improved correlations with SDR and PESQ metrics are proposed to minimize metric mismatch. The experimental result showed that the proposed denoising scheme significantly improved both SDR and PESQ performance over the existing methods

    Deep Learning for Environmentally Robust Speech Recognition: An Overview of Recent Developments

    Get PDF
    Eliminating the negative effect of non-stationary environmental noise is a long-standing research topic for automatic speech recognition that stills remains an important challenge. Data-driven supervised approaches, including ones based on deep neural networks, have recently emerged as potential alternatives to traditional unsupervised approaches and with sufficient training, can alleviate the shortcomings of the unsupervised methods in various real-life acoustic environments. In this light, we review recently developed, representative deep learning approaches for tackling non-stationary additive and convolutional degradation of speech with the aim of providing guidelines for those involved in the development of environmentally robust speech recognition systems. We separately discuss single- and multi-channel techniques developed for the front-end and back-end of speech recognition systems, as well as joint front-end and back-end training frameworks

    Attention-based Speech Enhancement Using Human Quality Perception Modelling

    Full text link
    Perceptually-inspired objective functions such as the perceptual evaluation of speech quality (PESQ), signal-to-distortion ratio (SDR), and short-time objective intelligibility (STOI), have recently been used to optimize performance of deep-learning-based speech enhancement algorithms. These objective functions, however, do not always strongly correlate with a listener's assessment of perceptual quality, so optimizing with these measures often results in poorer performance in real-world scenarios. In this work, we propose an attention-based enhancement approach that uses learned speech embedding vectors from a mean-opinion score (MOS) prediction model and a speech enhancement module to jointly enhance noisy speech. The MOS prediction model estimates the perceptual MOS of speech quality, as assessed by human listeners, directly from the audio signal. The enhancement module also employs a quantized language model that enforces spectral constraints for better speech realism and performance. We train the model using real-world noisy speech data that has been captured in everyday environments and test it using unseen corpora. The results show that our proposed approach significantly outperforms other approaches that are optimized with objective measures, where the predicted quality scores strongly correlate with human judgments.Comment: 11 pages, 4 figures, 3 tables, submitted in journal TASLP 202

    Single-Microphone Speech Enhancement and Separation Using Deep Learning

    Get PDF
    The cocktail party problem comprises the challenging task of understanding a speech signal in a complex acoustic environment, where multiple speakers and background noise signals simultaneously interfere with the speech signal of interest. A signal processing algorithm that can effectively increase the speech intelligibility and quality of speech signals in such complicated acoustic situations is highly desirable. Especially for applications involving mobile communication devices and hearing assistive devices. Due to the re-emergence of machine learning techniques, today, known as deep learning, the challenges involved with such algorithms might be overcome. In this PhD thesis, we study and develop deep learning-based techniques for two sub-disciplines of the cocktail party problem: single-microphone speech enhancement and single-microphone multi-talker speech separation. Specifically, we conduct in-depth empirical analysis of the generalizability capability of modern deep learning-based single-microphone speech enhancement algorithms. We show that performance of such algorithms is closely linked to the training data, and good generalizability can be achieved with carefully designed training data. Furthermore, we propose uPIT, a deep learning-based algorithm for single-microphone speech separation and we report state-of-the-art results on a speaker-independent multi-talker speech separation task. Additionally, we show that uPIT works well for joint speech separation and enhancement without explicit prior knowledge about the noise type or number of speakers. Finally, we show that deep learning-based speech enhancement algorithms designed to minimize the classical short-time spectral amplitude mean squared error leads to enhanced speech signals which are essentially optimal in terms of STOI, a state-of-the-art speech intelligibility estimator.Comment: PhD Thesis. 233 page

    Single-Microphone Speech Enhancement and Separation Using Deep Learning

    Get PDF
    corecore