32 research outputs found

    Towards Data-driven Simulation of End-to-end Network Performance Indicators

    Full text link
    Novel vehicular communication methods are mostly analyzed simulatively or analytically as real world performance tests are highly time-consuming and cost-intense. Moreover, the high number of uncontrollable effects makes it practically impossible to reevaluate different approaches under the exact same conditions. However, as these methods massively simplify the effects of the radio environment and various cross-layer interdependencies, the results of end-to-end indicators (e.g., the resulting data rate) often differ significantly from real world measurements. In this paper, we present a data-driven approach that exploits a combination of multiple machine learning methods for modeling the end-to-end behavior of network performance indicators within vehicular networks. The proposed approach can be exploited for fast and close to reality evaluation and optimization of new methods in a controllable environment as it implicitly considers cross-layer dependencies between measurable features. Within an example case study for opportunistic vehicular data transfer, the proposed approach is validated against real world measurements and a classical system-level network simulation setup. Although the proposed method does only require a fraction of the computation time of the latter, it achieves a significantly better match with the real world evaluations

    Benchmarking End-to-end Learning of MIMO Physical-Layer Communication

    Get PDF
    End-to-end data-driven machine learning (ML) of multiple-input multiple-output (MIMO) systems has been shown to have the potential of exceeding the performance of engineered MIMO transceivers, without any a priori knowledge of communication-theoretic principles. In this work, we aim to understand to what extent and for which scenarios this claim holds true when comparing with fair benchmarks. We study closed-loop MIMO, open-loop MIMO, and multi-user MIMO and show that the gains of ML-based communication in the former two cases can be to a large extent ascribed to implicitly learned geometric shaping and bit and power allocation, not to learning new spatial encoders. For MU-MIMO, we demonstrate the feasibility of a novel method with centralized learning and decentralized executing, outperforming conventional zero-forcing. For each scenario, we provide explicit descriptions as well as open-source implementations of the selected neural-network architectures.Comment: 6 pages, 8 figures, conference pape
    corecore