4,637 research outputs found

    Small-Object Detection in Remote Sensing Images with End-to-End Edge-Enhanced GAN and Object Detector Network

    Full text link
    The detection performance of small objects in remote sensing images is not satisfactory compared to large objects, especially in low-resolution and noisy images. A generative adversarial network (GAN)-based model called enhanced super-resolution GAN (ESRGAN) shows remarkable image enhancement performance, but reconstructed images miss high-frequency edge information. Therefore, object detection performance degrades for small objects on recovered noisy and low-resolution remote sensing images. Inspired by the success of edge enhanced GAN (EEGAN) and ESRGAN, we apply a new edge-enhanced super-resolution GAN (EESRGAN) to improve the image quality of remote sensing images and use different detector networks in an end-to-end manner where detector loss is backpropagated into the EESRGAN to improve the detection performance. We propose an architecture with three components: ESRGAN, Edge Enhancement Network (EEN), and Detection network. We use residual-in-residual dense blocks (RRDB) for both the ESRGAN and EEN, and for the detector network, we use the faster region-based convolutional network (FRCNN) (two-stage detector) and single-shot multi-box detector (SSD) (one stage detector). Extensive experiments on a public (car overhead with context) and a self-assembled (oil and gas storage tank) satellite dataset show superior performance of our method compared to the standalone state-of-the-art object detectors.Comment: This paper contains 27 pages and accepted for publication in MDPI remote sensing journal. GitHub Repository: https://github.com/Jakaria08/EESRGAN (Implementation

    Learning a Dilated Residual Network for SAR Image Despeckling

    Full text link
    In this paper, to break the limit of the traditional linear models for synthetic aperture radar (SAR) image despeckling, we propose a novel deep learning approach by learning a non-linear end-to-end mapping between the noisy and clean SAR images with a dilated residual network (SAR-DRN). SAR-DRN is based on dilated convolutions, which can both enlarge the receptive field and maintain the filter size and layer depth with a lightweight structure. In addition, skip connections and residual learning strategy are added to the despeckling model to maintain the image details and reduce the vanishing gradient problem. Compared with the traditional despeckling methods, the proposed method shows superior performance over the state-of-the-art methods on both quantitative and visual assessments, especially for strong speckle noise.Comment: 18 pages, 13 figures, 7 table

    Source-free Domain Adaptive Object Detection in Remote Sensing Images

    Full text link
    Recent studies have used unsupervised domain adaptive object detection (UDAOD) methods to bridge the domain gap in remote sensing (RS) images. However, UDAOD methods typically assume that the source domain data can be accessed during the domain adaptation process. This setting is often impractical in the real world due to RS data privacy and transmission difficulty. To address this challenge, we propose a practical source-free object detection (SFOD) setting for RS images, which aims to perform target domain adaptation using only the source pre-trained model. We propose a new SFOD method for RS images consisting of two parts: perturbed domain generation and alignment. The proposed multilevel perturbation constructs the perturbed domain in a simple yet efficient form by perturbing the domain-variant features at the image level and feature level according to the color and style bias. The proposed multilevel alignment calculates feature and label consistency between the perturbed domain and the target domain across the teacher-student network, and introduces the distillation of feature prototype to mitigate the noise of pseudo-labels. By requiring the detector to be consistent in the perturbed domain and the target domain, the detector is forced to focus on domaininvariant features. Extensive results of three synthetic-to-real experiments and three cross-sensor experiments have validated the effectiveness of our method which does not require access to source domain RS images. Furthermore, experiments on computer vision datasets show that our method can be extended to other fields as well. Our code will be available at: https://weixliu.github.io/ .Comment: 14 pages, 11 figure

    Few-shot Object Detection on Remote Sensing Images

    Full text link
    In this paper, we deal with the problem of object detection on remote sensing images. Previous methods have developed numerous deep CNN-based methods for object detection on remote sensing images and the report remarkable achievements in detection performance and efficiency. However, current CNN-based methods mostly require a large number of annotated samples to train deep neural networks and tend to have limited generalization abilities for unseen object categories. In this paper, we introduce a few-shot learning-based method for object detection on remote sensing images where only a few annotated samples are provided for the unseen object categories. More specifically, our model contains three main components: a meta feature extractor that learns to extract feature representations from input images, a reweighting module that learn to adaptively assign different weights for each feature representation from the support images, and a bounding box prediction module that carries out object detection on the reweighted feature maps. We build our few-shot object detection model upon YOLOv3 architecture and develop a multi-scale object detection framework. Experiments on two benchmark datasets demonstrate that with only a few annotated samples our model can still achieve a satisfying detection performance on remote sensing images and the performance of our model is significantly better than the well-established baseline models.Comment: 12pages, 7 figure

    A Robust and Low Complexity Deep Learning Model for Remote Sensing Image Classification

    Full text link
    In this paper, we present a robust and low complexity deep learning model for Remote Sensing Image Classification (RSIC), the task of identifying the scene of a remote sensing image. In particular, we firstly evaluate different low complexity and benchmark deep neural networks: MobileNetV1, MobileNetV2, NASNetMobile, and EfficientNetB0, which present the number of trainable parameters lower than 5 Million (M). After indicating best network architecture, we further improve the network performance by applying attention schemes to multiple feature maps extracted from middle layers of the network. To deal with the issue of increasing the model footprint as using attention schemes, we apply the quantization technique to satisfies the number trainable parameter of the model lower than 5 M. By conducting extensive experiments on the benchmark datasets NWPU-RESISC45, we achieve a robust and low-complexity model, which is very competitive to the state-of-the-art systems and potential for real-life applications on edge devices.Comment: 8 page

    Transfer Learning for High Resolution Aerial Image Classification

    Get PDF
    With rapid developments in satellite and sensor technologies, increasing amount of high spatial resolution aerial images have become available. Classification of these images are important for many remote sensing image understanding tasks, such as image retrieval and object detection. Meanwhile, image classification in the computer vision field is revolutionized with recent popularity of the convolutional neural networks (CNN), based on which the state-of-the-art classification results are achieved. Therefore, the idea of applying the CNN for high resolution aerial image classification is straightforward. However, it is not trivial mainly because the amount of labeled images in remote sensing for training a deep neural network is limited. As a result, transfer learning techniques were adopted for this problem, where the CNN used for the classification problem is pre-trained on a larger dataset beforehand. In this paper, we propose a specific fine-tuning strategy that results in better CNN models for aerial image classification. Extensive experiments were carried out using the proposed approach with different CNN architectures. Our proposed method shows competitive results compared to the existing approaches, indicating the superiority of the proposed fine-tuning algorith
    • …
    corecore