273 research outputs found

    Generating Abstractive Summaries from Meeting Transcripts

    Full text link
    Summaries of meetings are very important as they convey the essential content of discussions in a concise form. Generally, it is time consuming to read and understand the whole documents. Therefore, summaries play an important role as the readers are interested in only the important context of discussions. In this work, we address the task of meeting document summarization. Automatic summarization systems on meeting conversations developed so far have been primarily extractive, resulting in unacceptable summaries that are hard to read. The extracted utterances contain disfluencies that affect the quality of the extractive summaries. To make summaries much more readable, we propose an approach to generating abstractive summaries by fusing important content from several utterances. We first separate meeting transcripts into various topic segments, and then identify the important utterances in each segment using a supervised learning approach. The important utterances are then combined together to generate a one-sentence summary. In the text generation step, the dependency parses of the utterances in each segment are combined together to create a directed graph. The most informative and well-formed sub-graph obtained by integer linear programming (ILP) is selected to generate a one-sentence summary for each topic segment. The ILP formulation reduces disfluencies by leveraging grammatical relations that are more prominent in non-conversational style of text, and therefore generates summaries that is comparable to human-written abstractive summaries. Experimental results show that our method can generate more informative summaries than the baselines. In addition, readability assessments by human judges as well as log-likelihood estimates obtained from the dependency parser show that our generated summaries are significantly readable and well-formed.Comment: 10 pages, Proceedings of the 2015 ACM Symposium on Document Engineering, DocEng' 201

    Joint Modeling of Content and Discourse Relations in Dialogues

    Full text link
    We present a joint modeling approach to identify salient discussion points in spoken meetings as well as to label the discourse relations between speaker turns. A variation of our model is also discussed when discourse relations are treated as latent variables. Experimental results on two popular meeting corpora show that our joint model can outperform state-of-the-art approaches for both phrase-based content selection and discourse relation prediction tasks. We also evaluate our model on predicting the consistency among team members' understanding of their group decisions. Classifiers trained with features constructed from our model achieve significant better predictive performance than the state-of-the-art.Comment: Accepted by ACL 2017. 11 page

    Order-Preserving Abstractive Summarization for Spoken Content Based on Connectionist Temporal Classification

    Full text link
    Connectionist temporal classification (CTC) is a powerful approach for sequence-to-sequence learning, and has been popularly used in speech recognition. The central ideas of CTC include adding a label "blank" during training. With this mechanism, CTC eliminates the need of segment alignment, and hence has been applied to various sequence-to-sequence learning problems. In this work, we applied CTC to abstractive summarization for spoken content. The "blank" in this case implies the corresponding input data are less important or noisy; thus it can be ignored. This approach was shown to outperform the existing methods in term of ROUGE scores over Chinese Gigaword and MATBN corpora. This approach also has the nice property that the ordering of words or characters in the input documents can be better preserved in the generated summaries.Comment: Accepted by Interspeech 201

    Energy-based Self-attentive Learning of Abstractive Communities for Spoken Language Understanding

    Full text link
    Abstractive community detection is an important spoken language understanding task, whose goal is to group utterances in a conversation according to whether they can be jointly summarized by a common abstractive sentence. This paper provides a novel approach to this task. We first introduce a neural contextual utterance encoder featuring three types of self-attention mechanisms. We then train it using the siamese and triplet energy-based meta-architectures. Experiments on the AMI corpus show that our system outperforms multiple energy-based and non-energy based baselines from the state-of-the-art. Code and data are publicly available.Comment: Update baseline
    • …
    corecore