11,369 research outputs found

    Universal Amplification of KDM Security: From 1-Key Circular to Multi-Key KDM

    Get PDF
    An encryption scheme is Key Dependent Message (KDM) secure if it is safe to encrypt messages that can arbitrarily depend on the secret keys themselves. In this work, we show how to upgrade essentially the weakest form of KDM security into the strongest one. In particular, we assume the existence of a symmetric-key bit-encryption that is circular-secure in the 11-key setting, meaning that it maintains security even if one can encrypt individual bits of a single secret key under itself. We also rely on a standard CPA-secure public-key encryption. We construct a public-key encryption scheme that is KDM secure for general functions (of a-priori bounded circuit size) in the multi-key setting, meaning that it maintains security even if one can encrypt arbitrary functions of arbitrarily many secret keys under each of the public keys. As a special case, the latter guarantees security in the presence of arbitrary length key cycles. Prior work already showed how to amplify nn-key circular to nn-key KDM security for general functions. Therefore, the main novelty of our work is to upgrade from 11-key to nn-key security for arbitrary nn. As an independently interesting feature of our result, our construction does not need to know the actual specification of the underlying 1-key circular secure scheme, and we only rely on the existence of some such scheme in the proof of security. In particular, we present a universal construction of a multi-key KDM-secure encryption that is secure as long as some 1-key circular-secure scheme exists. While this feature is similar in spirit to Levin\u27s universal construction of one-way functions, the way we achieve it is quite different technically, and does not come with the same ``galactic inefficiency\u27\u27

    Naor-Yung paradigm with shared randomness and applications

    Get PDF
    The Naor-Yung paradigm (Naor and Yung, STOC’90) allows to generically boost security under chosen-plaintext attacks (CPA) to security against chosen-ciphertext attacks (CCA) for public-key encryption (PKE) schemes. The main idea is to encrypt the plaintext twice (under independent public keys), and to append a non-interactive zero-knowledge (NIZK) proof that the two ciphertexts indeed encrypt the same message. Later work by Camenisch, Chandran, and Shoup (Eurocrypt’09) and Naor and Segev (Crypto’09 and SIAM J. Comput.’12) established that the very same techniques can also be used in the settings of key-dependent message (KDM) and key-leakage attacks (respectively). In this paper we study the conditions under which the two ciphertexts in the Naor-Yung construction can share the same random coins. We find that this is possible, provided that the underlying PKE scheme meets an additional simple property. The motivation for re-using the same random coins is that this allows to design much more efficient NIZK proofs. We showcase such an improvement in the random oracle model, under standard complexity assumptions including Decisional Diffie-Hellman, Quadratic Residuosity, and Subset Sum. The length of the resulting ciphertexts is reduced by 50%, yielding truly efficient PKE schemes achieving CCA security under KDM and key-leakage attacks. As an additional contribution, we design the first PKE scheme whose CPA security under KDM attacks can be directly reduced to (low-density instances of) the Subset Sum assumption. The scheme supports keydependent messages computed via any affine function of the secret ke

    Homomorphic Data Isolation for Hardware Trojan Protection

    Full text link
    The interest in homomorphic encryption/decryption is increasing due to its excellent security properties and operating facilities. It allows operating on data without revealing its content. In this work, we suggest using homomorphism for Hardware Trojan protection. We implement two partial homomorphic designs based on ElGamal encryption/decryption scheme. The first design is a multiplicative homomorphic, whereas the second one is an additive homomorphic. We implement the proposed designs on a low-cost Xilinx Spartan-6 FPGA. Area utilization, delay, and power consumption are reported for both designs. Furthermore, we introduce a dual-circuit design that combines the two earlier designs using resource sharing in order to have minimum area cost. Experimental results show that our dual-circuit design saves 35% of the logic resources compared to a regular design without resource sharing. The saving in power consumption is 20%, whereas the number of cycles needed remains almost the sam

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Chosen-ciphertext security from subset sum

    Get PDF
    We construct a public-key encryption (PKE) scheme whose security is polynomial-time equivalent to the hardness of the Subset Sum problem. Our scheme achieves the standard notion of indistinguishability against chosen-ciphertext attacks (IND-CCA) and can be used to encrypt messages of arbitrary polynomial length, improving upon a previous construction by Lyubashevsky, Palacio, and Segev (TCC 2010) which achieved only the weaker notion of semantic security (IND-CPA) and whose concrete security decreases with the length of the message being encrypted. At the core of our construction is a trapdoor technique which originates in the work of Micciancio and Peikert (Eurocrypt 2012

    A quantum key distribution protocol for rapid denial of service detection

    Get PDF
    We introduce a quantum key distribution protocol designed to expose fake users that connect to Alice or Bob for the purpose of monopolising the link and denying service. It inherently resists attempts to exhaust Alice and Bob's initial shared secret, and is 100% efficient, regardless of the number of qubits exchanged above the finite key limit. Additionally, secure key can be generated from two-photon pulses, without having to make any extra modifications. This is made possible by relaxing the security of BB84 to that of the quantum-safe block cipher used for day-to-day encryption, meaning the overall security remains unaffected for useful real-world cryptosystems such as AES-GCM being keyed with quantum devices.Comment: 13 pages, 3 figures. v2: Shifted focus of paper towards DoS and added protocol 4. v1: Accepted to QCrypt 201

    On the Security of the Automatic Dependent Surveillance-Broadcast Protocol

    Full text link
    Automatic dependent surveillance-broadcast (ADS-B) is the communications protocol currently being rolled out as part of next generation air transportation systems. As the heart of modern air traffic control, it will play an essential role in the protection of two billion passengers per year, besides being crucial to many other interest groups in aviation. The inherent lack of security measures in the ADS-B protocol has long been a topic in both the aviation circles and in the academic community. Due to recently published proof-of-concept attacks, the topic is becoming ever more pressing, especially with the deadline for mandatory implementation in most airspaces fast approaching. This survey first summarizes the attacks and problems that have been reported in relation to ADS-B security. Thereafter, it surveys both the theoretical and practical efforts which have been previously conducted concerning these issues, including possible countermeasures. In addition, the survey seeks to go beyond the current state of the art and gives a detailed assessment of security measures which have been developed more generally for related wireless networks such as sensor networks and vehicular ad hoc networks, including a taxonomy of all considered approaches.Comment: Survey, 22 Pages, 21 Figure
    • …
    corecore