191 research outputs found

    Secure secret sharing in the cloud

    Get PDF
    In this paper, we show how a dealer with limited resources is possible to share the secrets to players via an untrusted cloud server without compromising the privacy of the secrets. This scheme permits a batch of two secret messages to be shared to two players in such a way that the secrets are reconstructable if and only if two of them collaborate. An individual share reveals absolutely no information about the secrets to the player. The secret messages are obfuscated by encryption and thus give no information to the cloud server. Furthermore, the scheme is compatible with the Paillier cryptosystem and other cryptosystems of the same type. In light of the recent developments in privacy-preserving watermarking technology, we further model the proposed scheme as a variant of reversible watermarking in the encrypted domain

    Reversible Data Hiding in Encrypted Text Using Paillier Cryptosystem

    Full text link
    Reversible Data Hiding in Encrypted Domain (RDHED) is an innovative method that can keep cover information secret and allows the data hider to insert additional information into it. This article presents a novel data hiding technique in an encrypted text called Reversible Data Hiding in Encrypted Text (RDHET). Initially, the original text is converted into their ASCII values. After that, the Paillier cryptosystem is adopted to encrypt all ASCII values of the original text and send it to the data hider for further processing. At the data hiding phase, the secret data are embedded into homomorphically encrypted text using a technique that does not lose any information, i.e., the homomorphic properties of the Paillier cryptosystem. Finally, the embedded secret data and the original text are recovered at the receiving end without any loss. Experimental results show that the proposed scheme is vital in the context of encrypted text processing at cloud-based services. Moreover, the scheme works well, especially for the embedding phase, text recovery, and performance on different security key sizes

    Reversible Data Hiding scheme using modified Histogram Shifting in Encrypted Images for Bio-medical images

    Get PDF
    Existing Least Significant Bit (LSB) steganography system is less robust and the stego-images can be corrupted easily by attackers. To overcome these problems Reversible data hiding (RDH) techniques are used. RDH is an efficient way of embedding confidential message into a cover image. Histogram expansion and histogram shifting are effective techniques in reversible data hiding. The embedded message and cover images can be extracted without any distortion. The proposed system focuses on implementation of RDH techniques for hiding data in encrypted bio-medical images without any loss. In the proposed techniques the bio-medical data are embedded into cover images by reversible data hiding technique. Histogram expansion and histogram shifting have been used to extract cover image and bio- medical data. Each pixel is encrypted by public key of Paillier cryptosystem algorithm. The homomorphic multiplication is used to expand the histogram of the image in encrypted domain. The histogram shifting is done based on the homomorphic addition and adjacent pixel difference in the encrypted domain. The message is embedded into the host image pixel difference. On receiving encrypted image with additional data, the receiver using his private key performs decryption. As a result, due to histogram expansion and histogram shifting embedded message and the host image can be recovered perfectly. The embedding rate is increased in host image than in existing scheme due to adjacency pixel difference

    Reversible Data Hiding scheme using modified Histogram Shifting in Encrypted Images for Bio-medical images

    Get PDF
    Existing Least Significant Bit (LSB) steganography system is less robust and the stego-images can be corrupted easily by attackers. To overcome these problems Reversible data hiding (RDH) techniques are used. RDH is an efficient way of embedding confidential message into a cover image. Histogram expansion and histogram shifting are effective techniques in reversible data hiding. The embedded message and cover images can be extracted without any distortion. The proposed system focuses on implementation of RDH techniques for hiding data in encrypted bio-medical images without any loss. In the proposed techniques the bio-medical data are embedded into cover images by reversible data hiding technique. Histogram expansion and histogram shifting have been used to extract cover image and bio- medical data. Each pixel is encrypted by public key of Paillier cryptosystem algorithm. The homomorphic multiplication is used to expand the histogram of the image in encrypted domain. The histogram shifting is done based on the homomorphic addition and adjacent pixel difference in the encrypted domain. The message is embedded into the host image pixel difference. On receiving encrypted image with additional data, the receiver using his private key performs decryption. As a result, due to histogram expansion and histogram shifting embedded message and the host image can be recovered perfectly. The embedding rate is increased in host image than in existing scheme due to adjacency pixel difference

    Privacy-preserving information hiding and its applications

    Get PDF
    The phenomenal advances in cloud computing technology have raised concerns about data privacy. Aided by the modern cryptographic techniques such as homomorphic encryption, it has become possible to carry out computations in the encrypted domain and process data without compromising information privacy. In this thesis, we study various classes of privacy-preserving information hiding schemes and their real-world applications for cyber security, cloud computing, Internet of things, etc. Data breach is recognised as one of the most dreadful cyber security threats in which private data is copied, transmitted, viewed, stolen or used by unauthorised parties. Although encryption can obfuscate private information against unauthorised viewing, it may not stop data from illegitimate exportation. Privacy-preserving Information hiding can serve as a potential solution to this issue in such a manner that a permission code is embedded into the encrypted data and can be detected when transmissions occur. Digital watermarking is a technique that has been used for a wide range of intriguing applications such as data authentication and ownership identification. However, some of the algorithms are proprietary intellectual properties and thus the availability to the general public is rather limited. A possible solution is to outsource the task of watermarking to an authorised cloud service provider, that has legitimate right to execute the algorithms as well as high computational capacity. Privacypreserving Information hiding is well suited to this scenario since it is operated in the encrypted domain and hence prevents private data from being collected by the cloud. Internet of things is a promising technology to healthcare industry. A common framework consists of wearable equipments for monitoring the health status of an individual, a local gateway device for aggregating the data, and a cloud server for storing and analysing the data. However, there are risks that an adversary may attempt to eavesdrop the wireless communication, attack the gateway device or even access to the cloud server. Hence, it is desirable to produce and encrypt the data simultaneously and incorporate secret sharing schemes to realise access control. Privacy-preserving secret sharing is a novel research for fulfilling this function. In summary, this thesis presents novel schemes and algorithms, including: • two privacy-preserving reversible information hiding schemes based upon symmetric cryptography using arithmetic of quadratic residues and lexicographic permutations, respectively. • two privacy-preserving reversible information hiding schemes based upon asymmetric cryptography using multiplicative and additive privacy homomorphisms, respectively. • four predictive models for assisting the removal of distortions inflicted by information hiding based respectively upon projection theorem, image gradient, total variation denoising, and Bayesian inference. • three privacy-preserving secret sharing algorithms with different levels of generality

    The Realizations of Steganography in Encrypted Domain

    Full text link
    With the popularization and application of privacy protection technologies in cloud service and social network, ciphertext has been gradually becoming a common platform for public to exchange data. Under the cover of such a plat-form, we propose steganography in encrypted domain (SIED) in this paper to re-alize a novel method to realize secret communication Based on Simmons' model of prisoners' problems, we discuss the application scenarios of SIED. According to the different accesses to the encryption key and decryption key for secret mes-sage sender or receiver, the application modes of SIED are classified into four modes. To analyze the security requirments of SIED, four levels of steganalysis attacks are introduced based on the prior knowledge about the steganography system that the attacker is assumed to obtain in advance. Four levels of security standards of SIED are defined correspondingly. Based on the existing reversible data hiding techniques, we give four schemes of SIED as practical instances with different security levels. By analyzing the embedding and extraction characteris-tics of each instance, their SIED modes, application frameworks and security lev-els are discussed in detail

    Separable Reversible Data Hiding in Encrypted Images Based on Two-Dimensional Histogram Modification

    Get PDF
    An efficient method of completely separable reversible data hiding in encrypted images is proposed. The cover image is first partitioned into nonoverlapping blocks and specific encryption is applied to obtain the encrypted image. Then, image difference in the encrypted domain can be calculated based on the homomorphic property of the cryptosystem. The data hider, who does not know the original image content, may reversibly embed secret data into image difference based on two-dimensional difference histogram modification. Data extraction is completely separable from image decryption; that is, data extraction can be done either in the encrypted domain or in the decrypted domain, so that it can be applied to different application scenarios. In addition, data extraction and image recovery are free of any error. Experimental results demonstrate the feasibility and efficiency of the proposed scheme
    • …
    corecore