37 research outputs found

    On Exploiting Hitting Sets for Model Reconciliation

    Full text link
    In human-aware planning, a planning agent may need to provide an explanation to a human user on why its plan is optimal. A popular approach to do this is called model reconciliation, where the agent tries to reconcile the differences in its model and the human's model such that the plan is also optimal in the human's model. In this paper, we present a logic-based framework for model reconciliation that extends beyond the realm of planning. More specifically, given a knowledge base KB1KB_1 entailing a formula φ\varphi and a second knowledge base KB2KB_2 not entailing it, model reconciliation seeks an explanation, in the form of a cardinality-minimal subset of KB1KB_1, whose integration into KB2KB_2 makes the entailment possible. Our approach, based on ideas originating in the context of analysis of inconsistencies, exploits the existing hitting set duality between minimal correction sets (MCSes) and minimal unsatisfiable sets (MUSes) in order to identify an appropriate explanation. However, differently from those works targeting inconsistent formulas, which assume a single knowledge base, MCSes and MUSes are computed over two distinct knowledge bases. We conclude our paper with an empirical evaluation of the newly introduced approach on planning instances, where we show how it outperforms an existing state-of-the-art solver, and generic non-planning instances from recent SAT competitions, for which no other solver exists

    Extending SATPLAN to Multiple Agents

    Full text link

    Bigraphs with sharing

    Get PDF
    Bigraphical Reactive Systems (BRS) were designed by Milner as a universal formalism for modelling systems that evolve in time, locality, co-locality and connectivity. But the underlying model of location (the place graph) is a forest, which means there is no straightforward representation of locations that can overlap or intersect. This occurs in many domains, for example in wireless signalling, social interactions and audio communications. Here, we define bigraphs with sharing, which solves this problem by an extension of the basic formalism: we define the place graph as a directed acyclic graph, thus allowing a natural representation of overlapping or intersecting locations. We give a complete presentation of the theory of bigraphs with sharing, including a categorical semantics, algebraic properties, and several essential procedures for computation: bigraph with sharing matching, a SAT encoding of matching, and checking a fragment of the logic BiLog. We show that matching is an instance of the NP-complete sub-graph isomorphism problem and our approach based on a SAT encoding is also efficient for standard bigraphs. We give an overview of BigraphER (Bigraph Evaluator & Rewriting), an efficient implementation of bigraphs with sharing that provides manipulation, simulation and visualisation. The matching engine is based on the SAT encoding of the matching algorithm. Examples from the 802.11 CSMA/CA RTS/CTS protocol and a network management support system illustrate the applicability of the new theory

    ToyArchitecture: Unsupervised Learning of Interpretable Models of the World

    Full text link
    Research in Artificial Intelligence (AI) has focused mostly on two extremes: either on small improvements in narrow AI domains, or on universal theoretical frameworks which are usually uncomputable, incompatible with theories of biological intelligence, or lack practical implementations. The goal of this work is to combine the main advantages of the two: to follow a big picture view, while providing a particular theory and its implementation. In contrast with purely theoretical approaches, the resulting architecture should be usable in realistic settings, but also form the core of a framework containing all the basic mechanisms, into which it should be easier to integrate additional required functionality. In this paper, we present a novel, purposely simple, and interpretable hierarchical architecture which combines multiple different mechanisms into one system: unsupervised learning of a model of the world, learning the influence of one's own actions on the world, model-based reinforcement learning, hierarchical planning and plan execution, and symbolic/sub-symbolic integration in general. The learned model is stored in the form of hierarchical representations with the following properties: 1) they are increasingly more abstract, but can retain details when needed, and 2) they are easy to manipulate in their local and symbolic-like form, thus also allowing one to observe the learning process at each level of abstraction. On all levels of the system, the representation of the data can be interpreted in both a symbolic and a sub-symbolic manner. This enables the architecture to learn efficiently using sub-symbolic methods and to employ symbolic inference.Comment: Revision: changed the pdftitl
    corecore