3,387 research outputs found

    TTCM-aided rate-adaptive distributed source coding for Rayleigh fading channels

    No full text
    Adaptive turbo-trellis-coded modulation (TTCM)-aided asymmetric distributed source coding (DSC) is proposed, where two correlated sources are transmitted to a destination node. The first source sequence is TTCM encoded and is further compressed before it is transmitted through a Rayleigh fading channel, whereas the second source signal is assumed to be perfectly decoded and, hence, to be flawlessly shown at the destination for exploitation as side information for improving the decoding performance of the first source. The proposed scheme is capable of reliable communications within 0.80 dB of the Slepian-Wolf/Shannon (SW/S) theoretical limit at a bit error rate (BER) of 10-5. Furthermore, its encoder is capable of accommodating time-variant short-term correlation between the two sources

    Information Nonanticipative Rate Distortion Function and Its Applications

    Full text link
    This paper investigates applications of nonanticipative Rate Distortion Function (RDF) in a) zero-delay Joint Source-Channel Coding (JSCC) design based on average and excess distortion probability, b) in bounding the Optimal Performance Theoretically Attainable (OPTA) by noncausal and causal codes, and computing the Rate Loss (RL) of zero-delay and causal codes with respect to noncausal codes. These applications are described using two running examples, the Binary Symmetric Markov Source with parameter p, (BSMS(p)) and the multidimensional partially observed Gaussian-Markov source. For the multidimensional Gaussian-Markov source with square error distortion, the solution of the nonanticipative RDF is derived, its operational meaning using JSCC design via a noisy coding theorem is shown by providing the optimal encoding-decoding scheme over a vector Gaussian channel, and the RL of causal and zero-delay codes with respect to noncausal codes is computed. For the BSMS(p) with Hamming distortion, the solution of the nonanticipative RDF is derived, the RL of causal codes with respect to noncausal codes is computed, and an uncoded noisy coding theorem based on excess distortion probability is shown. The information nonanticipative RDF is shown to be equivalent to the nonanticipatory epsilon-entropy, which corresponds to the classical RDF with an additional causality or nonanticipative condition imposed on the optimal reproduction conditional distribution.Comment: 34 pages, 12 figures, part of this paper was accepted for publication in IEEE International Symposium on Information Theory (ISIT), 2014 and in book Coordination Control of Distributed Systems of series Lecture Notes in Control and Information Sciences, 201

    Partial Sums Generation Architecture for Successive Cancellation Decoding of Polar Codes

    Full text link
    Polar codes are a new family of error correction codes for which efficient hardware architectures have to be defined for the encoder and the decoder. Polar codes are decoded using the successive cancellation decoding algorithm that includes partial sums computations. We take advantage of the recursive structure of polar codes to introduce an efficient partial sums computation unit that can also implements the encoder. The proposed architecture is synthesized for several codelengths in 65nm ASIC technology. The area of the resulting design is reduced up to 26% and the maximum working frequency is improved by ~25%.Comment: Submitted to IEEE Workshop on Signal Processing Systems (SiPS)(26 April 2012). Accepted (28 June 2013

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    Exact Moderate Deviation Asymptotics in Streaming Data Transmission

    Full text link
    In this paper, a streaming transmission setup is considered where an encoder observes a new message in the beginning of each block and a decoder sequentially decodes each message after a delay of TT blocks. In this streaming setup, the fundamental interplay between the coding rate, the error probability, and the blocklength in the moderate deviations regime is studied. For output symmetric channels, the moderate deviations constant is shown to improve over the block coding or non-streaming setup by exactly a factor of TT for a certain range of moderate deviations scalings. For the converse proof, a more powerful decoder to which some extra information is fedforward is assumed. The error probability is bounded first for an auxiliary channel and this result is translated back to the original channel by using a newly developed change-of-measure lemma, where the speed of decay of the remainder term in the exponent is carefully characterized. For the achievability proof, a known coding technique that involves a joint encoding and decoding of fresh and past messages is applied with some manipulations in the error analysis.Comment: 23 pages, 1 figure, 1 table, Submitted to IEEE Transactions on Information Theor

    Zero-Delay Rate Distortion via Filtering for Vector-Valued Gaussian Sources

    Full text link
    We deal with zero-delay source coding of a vector-valued Gauss-Markov source subject to a mean-squared error (MSE) fidelity criterion characterized by the operational zero-delay vector-valued Gaussian rate distortion function (RDF). We address this problem by considering the nonanticipative RDF (NRDF) which is a lower bound to the causal optimal performance theoretically attainable (OPTA) function and operational zero-delay RDF. We recall the realization that corresponds to the optimal "test-channel" of the Gaussian NRDF, when considering a vector Gauss-Markov source subject to a MSE distortion in the finite time horizon. Then, we introduce sufficient conditions to show existence of solution for this problem in the infinite time horizon. For the asymptotic regime, we use the asymptotic characterization of the Gaussian NRDF to provide a new equivalent realization scheme with feedback which is characterized by a resource allocation (reverse-waterfilling) problem across the dimension of the vector source. We leverage the new realization to derive a predictive coding scheme via lattice quantization with subtractive dither and joint memoryless entropy coding. This coding scheme offers an upper bound to the operational zero-delay vector-valued Gaussian RDF. When we use scalar quantization, then for "r" active dimensions of the vector Gauss-Markov source the gap between the obtained lower and theoretical upper bounds is less than or equal to 0.254r + 1 bits/vector. We further show that it is possible when we use vector quantization, and assume infinite dimensional Gauss-Markov sources to make the previous gap to be negligible, i.e., Gaussian NRDF approximates the operational zero-delay Gaussian RDF. We also extend our results to vector-valued Gaussian sources of any finite memory under mild conditions. Our theoretical framework is demonstrated with illustrative numerical experiments.Comment: 32 pages, 9 figures, published in IEEE Journal of Selected Topics in Signal Processin
    corecore