4 research outputs found

    Woven Graph Codes: Asymptotic Performances and Examples

    Full text link
    Constructions of woven graph codes based on constituent block and convolutional codes are studied. It is shown that within the random ensemble of such codes based on ss-partite, ss-uniform hypergraphs, where ss depends only on the code rate, there exist codes satisfying the Varshamov-Gilbert (VG) and the Costello lower bound on the minimum distance and the free distance, respectively. A connection between regular bipartite graphs and tailbiting codes is shown. Some examples of woven graph codes are presented. Among them an example of a rate Rwg=1/3R_{\rm wg}=1/3 woven graph code with dfree=32d_{\rm free}=32 based on Heawood's bipartite graph and containing n=7n=7 constituent rate Rc=2/3R^{c}=2/3 convolutional codes with overall constraint lengths νc=5\nu^{c}=5 is given. An encoding procedure for woven graph codes with complexity proportional to the number of constituent codes and their overall constraint length νc\nu^{c} is presented.Comment: Submitted to IEEE Trans. Inform. Theor

    Codes on Graphs and More

    Get PDF
    Modern communication systems strive to achieve reliable and efficient information transmission and storage with affordable complexity. Hence, efficient low-complexity channel codes providing low probabilities for erroneous receptions are needed. Interpreting codes as graphs and graphs as codes opens new perspectives for constructing such channel codes. Low-density parity-check (LDPC) codes are one of the most recent examples of codes defined on graphs, providing a better bit error probability than other block codes, given the same decoding complexity. After an introduction to coding theory, different graphical representations for channel codes are reviewed. Based on ideas from graph theory, new algorithms are introduced to iteratively search for LDPC block codes with large girth and to determine their minimum distance. In particular, new LDPC block codes of different rates and with girth up to 24 are presented. Woven convolutional codes are introduced as a generalization of graph-based codes and an asymptotic bound on their free distance, namely, the Costello lower bound, is proven. Moreover, promising examples of woven convolutional codes are given, including a rate 5/20 code with overall constraint length 67 and free distance 120. The remaining part of this dissertation focuses on basic properties of convolutional codes. First, a recurrent equation to determine a closed form expression of the exact decoding bit error probability for convolutional codes is presented. The obtained closed form expression is evaluated for various realizations of encoders, including rate 1/2 and 2/3 encoders, of as many as 16 states. Moreover, MacWilliams-type identities are revisited and a recursion for sequences of spectra of truncated as well as tailbitten convolutional codes and their duals is derived. Finally, the dissertation is concluded with exhaustive searches for convolutional codes of various rates with either optimum free distance or optimum distance profile, extending previously published results

    A rate R=5/20 hypergraph-based woven convolutional code with free distance 120

    Get PDF
    A rate R=5/20 hypergraph-based woven convolu- tional code with overall constraint length 67 and constituent con- volutional codes is presented. It is based on a 3-partite, 3-uniform, 4-regular hypergraph and contains rate R=3/4 constituent convolutional codes with overall constraint length 5. Although the code construction is based on low-complexity codes, the free distance of this construction, computed with the BEAST algorithm, is dfree=120, which is remarkably large

    Encoder and distance properties of woven convolutional codes with one tailbiting component code

    No full text
    Woven convolutional codes with one tailbiting component code are studied and their generator matrices are given. It is shown that, if the constituent encoders are identical, a woven convolutional encoder with an outer convolutional warp and one inner tailbiting encoder (WIT) generates the same code as a woven convolutional encoder with one outer tailbiting encoder and an inner convolutional warp (WOT). However, for rate R tb < 1 tailbiting encoders, the WOT cannot be an encoder realization with a minimum number of delay elements. Lower bounds on the free distance and active distances of woven convolutional codes with a tailbiting component code are given. These bounds are equal to those for woven codes consisting exclusively of unterminated convolutional codes. However, for woven convolutional codes with one tailbiting component code, the conditions for the bounds to hold are less strict
    corecore