63 research outputs found
Smart and Functional Polymers
This book is based on the Special Issue of the journal Molecules on “Smart and Functional Polymers”. The collected research and review articles focus on the synthesis and characterization of advanced functional polymers, polymers with specific structures and performances, current improvements in advanced polymer-based materials for various applications, and the opportunities and challenges in the future. The topics cover the emerging synthesis and characterization technology of smart polymers, core?shell structure polymers, stimuli-responsive polymers, anhydrous electrorheological materials fabricated from conducting polymers, reversible polymerization systems, and biomedical polymers for drug delivery and disease theranostics. In summary, this book provides a comprehensive overview of the latest synthesis approaches, representative structures and performances, and various applications of smart and functional polymers. It will serve as a useful reference for all researchers and readers interested in polymer sciences and technologies
Developing electrocatalysts (precious and non-precious) for PEM fuel cells applying metal organic frameworks
Les piles à combustible ont un grand potentiel pour une utilisation en tant que dispositifs alternatifs de conversion d'énergie pour de nombreuses applications. Les piles à combustible PEM sont considérées comme des remplaçants potentiels du moteur à combustion interne des véhicules automobiles, en raison de leurs émissions réduites et d'une meilleure efficacité. Un catalyseur à base de Pt est nécessaire pour faciliter à la fois la réaction d'oxydation de l'hydrogène (HOR) et la réaction de réduction de l'oxygène (ORR) qui se produisent à l'anode et à la cathode d'une PEMFC, respectivement. La vitesse d'ORR est intrinsèquement très lente et est considérée comme le facteur limitant de la performance des PEMFCs. Afin de produire de l'énergie à un rythme acceptable pour les applications du monde réel, une quantité importante de catalyseur au Pt est nécessaire. Celui-ci est habituellement sous la forme de nanoparticules de platine uniformément réparties sur un matériau de support en carbone poreux (Pt/C). Le Pt est un métal noble extrêmement coûteux avec une abondance naturelle très limitée. Ainsi, la commercialisation à grande échelle de PEMFC nécessite des progrès importants dans le développement de catalyseurs à la fois pour réduire la quantité de platine et renforcer la durabilité du catalyseur. Dans ce travail de recherche, nous avons utilisé des réseaux de coordination hybrides métal composé organique (MOF) comme seul précurseur pour préparer des électrocatalyseurs pour PEMFC. En raison de leur cristallinité, de leur porosité et de leur structure hybride, ces matériaux ont un potentiel pour être appliqués comme précurseur d'électrocatalyseurs de PEMFC. La structure tridimensionnelle bien définie de ces matériaux peut produire une forte densité de sites métalliques actifs distribués uniformément à travers leur structure et disposés régulièrement. Ainsi, ils peuvent améliorer l'utilisation du catalyseur. Les groupes de liaison organiques du précurseur à base de MOF sont convertis en carbone lors de l'activation thermique, tout en maintenant le réseau poreux, ce qui conduit à des catalyseurs ayant une grande surface spécifique et des sites actifs uniformément distribués sans la nécessité d'un autre support de carbone. Des précurseurs MOF contenant du Pt et du Fe ont été synthétisés et utilisés comme le précurseur exclusif pour développer à la fois des électrocatalyseurs à base de Pt et de métaux non précieux (Fe) pour PEMFC. L'expérience construite avec des électrocatalyseurs à base de Pt a été le premier essai de mise en œuvre de métaux précieux à base de MOFs pour développer des électrocatalyseurs PEMFC. L'électrocatalyseur à base de Pt dérivé de ce précurseur contenant du Pt MOF a démontré une performance catalytique comparable à celle disponible dans le commerce Pt/C en particulier pour les HOR du côté de l'anode. Pour préparer un électrocatalyseur non-précieux, un MOF contenant du Fe appartenant à une nouvelle classe de matériaux MOF, autre que les ZIFs, a été synthétisé et utilisé comme le précurseur unique d'électrocatalyseurs. Ce fut le premier rapport sur l'utilisation d'un précurseur MOF non-ZIF pour le développement d'électrocatalyseurs ORR. Cet électrocatalyseur à base de Fe a révélé une activité prometteuse en ORR et les performances de pile à combustible PEM lorsqu'il est appliqué à la couche de catalyseur cathodique de la MEA correspondante. En outre, l'effet de la composition de l'encre de catalyseur préparée à partir du dérivé MOF électrocatalyseur à base de Pt, en termes de teneur en ionomère Nafion, a été étudiée sur la performance globale du PEMFC via un modèle CFD macroscopique. La tendance prédite à partir des calculs de modélisation a ensuite été examinée expérimentalement à la recherche de la teneur optimale en ionomère Nafion. De plus, les électrocatalyseurs produits par la transformation thermique des MOFs à base de Pt sur noir de carbone, ont été étudiés par spectroscopie d'impédance. Les précurseurs (MOF-253) et leurs produits de thermolyse ont été pris en compte dans cette étude. Il a été observé que les matériaux soumis à la thermolyse à différentes températures passaient par différents états de conductibilité, depuis des isolants jusqu'à des matériaux de conductance voisine de celle des métaux. Ces données présentaient une augmentation de conductance avec la température et des valeurs élevées à température ambiante.Fuel cells have great potential for use as alternative energy conversion devices for a wide variety of applications. Proton exchange membrane fuel cells (PEMFCs) are considered to be potential replacements for internal combustion engines in automobiles, owing to their reduced emissions and better efficiency. A platinum (Pt)-based catalyst is required to facilitate both hydrogen oxidation reaction (HOR) and oxygen reduction reaction (ORR) which occur at the anode and cathode of PEMFCs, respectively. The ORR kinetic is inherently very sluggish and is considered the limiting factor facing the performance of PEMFCs. In order to generate power at an acceptable rate for real world applications, a significant amount of Pt catalyst is required. This is traditionally in the form of Pt nanoparticles evenly distributed on a porous carbon support material (Pt/C). Pt is an extremely expensive noble metal with very limited natural abundance. Thus, large-scale commercialization of PEMFCs requires significant advances in catalyst development in order both to reduce the amount of Pt metal and to enhance catalyst durability. In this research work, we employed Metal-Organic Frameworks (MOFs) as a sole precursor for preparing PEMFC electrocatalysts. Owing to their crystalline, porous, hybrid structure, these materials have potential to be applied as PEMFCs electrocatalyst precursor. The clearly-defined three-dimensional structure of these materials can produce a high density of metal active sites evenly distributed through their regularly arranged structure. They can therefore enhance catalyst utilization. The organic linkers of the MOF-based precursor would be converted to carbon during thermal activation while maintaining the porous framework, leading to catalysts with high surface area and uniformly distributed active sites without the need for a carbon support. Pt and Fe containing MOF precursors were synthesized and used as the sole precursor to develop both Pt and non-precious (Fe)-based electrocatalysts for PEMFCs. A Pt-based electrocatalyst was the first reported on implementation of precious metal containing MOFs for developing PEMFC electrocatalyst. The Pt-based electrocatalyst derived from this Pt-containing MOF precursor demonstrated catalytic performance comparable to the commercially available Pt/C especially for HOR at the anode side. To prepare a non-precious electrocatalyst, Fe containing MOF belonging to a different class of MOF materials other than ZIFs was synthesized and used as the sole electrocatalyst precursor. This was the first report on using non-ZIF MOF precursor for ORR electrocatalyst development. This Fe-based electrocatalyst revealed promising ORR activity and PEM fuel cell performance when applied at the cathodic catalytic layer of the corresponding membrane electrode assembly (MEA). In addition, the effect of catalyst ink composition prepared from the MOF derived Pt-based electrocatalyst, in terms of Nafion ionomer content, on the overall performance of PEMFC was investigated via a macroscopic CFD model. The trend predicted from the model calculations was then surveyed experimentally in search for the optimum Nafion ionomer content. Furthermore, the products of thermal transformation of Pt-based MOF into carbon-black based electrocatalyst were studied using a.c. impedance spectroscopy. Along with the electrocatalyst precursor, thermolysis products of parent MOF-253 (Al-containing) were considered in these studies. The materials subjected to thermolysis at increasing temperatures were found to pass through different conduction states starting from insulator and ending up with a particular metal-like conductance with positive temperature dependence and high ambient conductivity
Advance in Composite Gels
In the last few decades, various composite gels have been developed. In recent years, further advances have been made in the development of novel composite gels with potential applications in various fields. This reprint offers the latest findings of composite gels by experts throughout the world
Metal-organic framework (MOF) coatings for separation and biosensing
This dissertation is an interdisciplinary research project, which encompass the understanding of material science and surface engineering for MOF applications in separation and biosensing via three main studies.
To expand the application of MOF in industry and commercial devices, the formation of continuous and intergrown MOF coating on flexible polymeric materials is necessary. It is found that the use of polydopamine/polyethyleneimine (PDA/PEI) coating for ZIF-8 nucleation and growth is highly dependent on the pre-treatment protocol, morphology, surface chemistry and surface charge of the modified support material. The main finding from this study is that the formation of dense PDA-PEI intermediate coating plays a key role in ensuring intergrown and connected polycrystalline ZIF-8 film on microporous polymeric support. It is found that not only the addition of biomaterials into the ZIF-8 structure were successful, the changes in the resulting morphology were also observed in terms of amorphous-crystalline structure, density, and roughness of ZIF materials.
Next, biomineralization of GOx&HRP enzyme in MOF composite is utilized as a biosensor device. The results show that the ZIF-8/GOx&HRP in-situ composites have good acid and thermal stability compared to samples without ZIF-8. ZIF-8/GOx&HRP in-situ shows high selectivity towards glucose, linear sensitivity of 0.00303 Abs/μM. An unexpected benefit of this approach is the ability of the ZIF-8 thin film structure to provide a diffusion limiting effect for substrate influx; thus, producing high range of linear response range (8 µM-5mM of glucose). This study provides insight on the spatial location of the enzymes in MOF thin films, the effect of MOF functional group to enzyme activity and the potential of such patterning techniques for MOF-based biosensors using other types of biological elements such as antibodies and aptamers.
Lastly, ZIF-8 membrane is fabricated using tannic acid and iron complexes (TA-Fe(III)) which is a cheaper, reversible, and green alternative to PDA/PEI and enzyme-induced MOF growth. The novel TA-Fe(III)/ZIF-8 film demonstrated ion selectivity ratio of K+/ Mg2+ (4.49), Na+/ Mg2+ (4.0) and Li+/ Mg2+ (3.87) which is excellent for lithium-ion extraction application from brine. Further investigation suggests that partial dehydration-hydration process plays a role for ion transport mechanism across the TA-Fe(III)/ZIF-8. The ion and gas separation performance of ZIF-8 based on TA-Fe(III) and PDA/PEI coating are compared to further discuss the role of surface modification on the quality of ZIF separation.
The novelty of the dissertation lies in the new understanding of the interactions of support material, surface chemistry and MOF synthesis chemistry with guest molecules, which could open an avenue for large-scale manufacturing and commercialization of various MOF based devices
Design of New Azole Molecules to Prevent Metal Leaching from Medical Implants
The aim of this project was to develop new coatings for titanium based implants, most particularly stents, incorporating heterocyclic functional groups in their structure that will have the potential to bind to a titanium surface and prevent or reduce metal corrosion. Many of the current coatings are chemically bound onto metallic surfaces, but this project looks at electropolymerising the coatings onto the surface of the Ti6Al4V stents. Hence, polymerising functional groups have been incorporated with azoles in the structure of the synthesised compounds. Additionally, surface characterisation and preliminary corrosion studies have been carried out on a series of coated TI6Al4V stents.
In this study, the compounds synthesised have been divided into three groups. Compounds from series 1 have been synthesised from the core unit 2-(1H-tetrazol-5- yl)pyridine, while compounds from series 2 have been derived from pyrrole or 1,2- dimethyltetrahydrofuran. Series 3 compounds were obtained by reacting compounds 1 and 2 together. This in turn created a series of tetrazole/pyrrole based compounds. A total of 16 compounds are reported in this thesis. The compounds were isolated and identified by spectroscopic techniques (1H and 13C NMR, IR) as well as elemental analysis. A selection of series 3 compounds were subsequently chosen based on their polymerisation properties and coated onto a Ti6Al4V stent surface. The coatings were characterised by microscopy (SEM and AFM) and subjected to electrochemical corrosion testing via Tafel analysis.
The preliminary results indicated that some of the synthesised coatings display a good coating ability and improved anti-corrosion properties, relative to coatings currently on the medical device market. Compounds 2-(2,2-diethoxyethane-3amino-pyrrol-1-yl ethyl-(1-tetrazol-5-yl) pyridine and 2-(n-ethylphenylpyrrole-(2H-tetrazol-5-yl) pyridine demonstrated the best reduction in corrosion, with a 5 fold reduction when compared to the uncoated Ti6Al4V stent.
New tetrazole/pyrrole based coatings have been synthesised in this project, that have the capabilities of adhering to metallic surfaces and reduce metal corrosion. It is hoped that this exploratory work could lead to an introduction of new corrosion reducing iv coatings onto the medical stent market. However, further research is needed to bring the application of this project to the market
Electrospun Composite Nanofibers for Functional Applications
This reprint includes research articles on various applications of electrospun nanofibers. Nanofibers have potential to be used in tissue engineering, energy harvesting, sensors, separators, water filtration, air filtration, and other applications as well. This Special Issue has received 11 interesting research articles, which covers such application areas
Functional Chitosan-Based Composites
Functional chitosan-based composites provide recent advances in the field. This reprint explores the preparation and characterization of nanocomposite films, membranes, hydrogels and nanoparticles, emphasizing their potential application as medical devices, packaging, or fuel cells. It will be a useful resource for academic and industry scientists
Design of novel well-defined organorhenium heterogeneous catalyst for unsaturated fatty acid derivatives self-metathesis
La formation des liaisons C-C est parmi les cibles les plus élevés de la science et de la technologie de la catalyse. Dans ce cadre, la réaction de métathèse catalytique a gagné une importance considérable en raison de l'efficacité du processus de transformation. Par conséquent, un grand progrès a été réalisé dans ce domaine avec le développement de plusieurs catalyseurs homogènes et hétérogènes, ainsi que les différentes approches de métathèse. Cette formule a permis une conception plus facile et plus durable de diverses stratégies de synthèse dans différents domaines, y compris la synthèse organique, la science des polymères, etc. Cependant, le développement des catalyseurs de métathèse robustes pour les applications à grande échelle est encore une tâche difficile. Tenant compte de cela, les résultats de recherche présentés dans cette thèse de doctorat se concentrent sur la synthèse d'un nouveau catalyseur hétérogène de métathèse. Par conséquent, le méthyltrioxorhénium (MTO) a été supporté sur différents matériaux à base d'alumine. La performance des catalyseurs synthétisés a été étudié par l'auto-métathèse de l'oléate de méthyle, choisi comme substrat modèle; volumineux et fonctionnalisé, afin d'évaluer la tolérance des espèces actives aux groupements fonctionnels, ainsi que d'évaluer sa diffusion à l'intérieur des canaux mésoporeux. Tout d'abord, des supports très organisés à base alumine mésoporeux organisée modifiée avec le chlorure de zinc (ZnCl2-AMO) ont été préparés avec succès grâce à un procédé sol-gel puis une imprégnation post-synthèse. Le MTO supporté sur ces supports catalytiques est très actif pour l'auto-métathèse de l'oléate de méthyle, avec des vitesses de réaction plus élevées et une meilleure sélectivité par rapport aux catalyseurs à base d'alumine classiques. Cette amélioration est attribuée à des meilleurs phénomènes de transfert de masse à l'intérieur du réseau mésoporeux organisé. Ensuite, nous avons développé une voie de synthèse efficace en une seule étape pour la préparation des matériaux ZnCl2-AMO. Cette approche a permis l'accès à des supports ZnCl2-AMO très ordonnés avec de meilleurs rendements de synthèse ainsi que de meilleures propriétés physiques et de surface. En outre, ces fonctionnalités améliorées ont permis aux catalyseurs à base de MTO supportés sur ces matériaux préparés en une seule étape de manifester une meilleure performance catalytique par rapport à celle de ZnCl2-AMO préparé par le processus en plusieurs étapes. Toutefois, des études spectroscopiques ont révélé la formation d'espèces actives semblables sur la surface pour tous les supports catalytiques préparées. Ces caractérisations nous ont guidés pour étudier et proposer un mécanisme complet pour les voies de formation des produits de métathèse, ainsi que le cycle catalytique de métathèse, démontrant l'effet d'encombrement stérique sur l'interface de catalyseurs qui contrôle la sélectivité de la réaction. La synthèse des catalyseurs de métathèse MTO/ZnCl2-AMO nous a permis d'effectuer efficacement les transformations de métathèse utilisant des matières premières renouvelables (par exemple des acides gras estérifiés provenant des huiles végétales), offrant un accès à une variété de monomères fonctionnalisés, qui pourraient éventuellement être utilisés pour d'autres transformations telles que la synthèse des bio-polymères à valeur ajoutée à base (par exemple, les bioplastiques, biosurfactants).Sustainable C-C bond forming reactions have been among the highest target of catalysis science and technology. In this scope, metathesis reaction has been gaining enormous attention due to the efficiency of the transformation process. Therefore, a great progress has been made in this area by developing several homogeneous and heterogeneous catalysts as well as distinct metathesis reaction approaches. This allows an easier and more sustainable design for various synthesis strategies in different fields including organic synthesis, polymer science, etc. However, the development of robust metathesis catalysts for large scale applications is still a challenging task. Taking this into account, this research presented in this doctoral dissertation is focusing on the synthesis of new heterogeneous metathesis catalysts. Therefore, methyltrioxorhenium (MTO) was supported on various alumina-based materials. The synthesized catalysts' performance was studied though methyl oleate self-metathesis, chosen as a model bulky functionalized substrate, in order to evaluate the active species tolerance to functional groups as well as to evaluate its diffusion inside the mesoporous channels. First, highly organized ZnCl2-modified OMA supports were successfully prepared through a sol-gel method followed by a post-synthesis modification via wet-impregnation process. MTO supported on these catalytic supports were found o be highly active for methyl oleate self-metathesis, displaying higher reaction rate and products selectivity compared to the conventional wormhole-like alumina-based catalysts. This improvement is ascribed to enhanced mass transfer phenomena inside the organized mesoporous network. Afterwards, we have developed efficient one-pot synthesis route ZnCl2-modified OMA supports. Interestingly, this approaches allowed access to numerous highly ordered ZnCl2-modified OMA supports with better synthesis yields and improved textural and surface properties. Moreover, these enhanced features allowed the MTO-based catalyst supported on these one-step prepared materials to exhibit higher metathesis reaction performance compared to ZnCl2-modified OMA supports prepared via the two-steps processes. However, spectroscopic investigations revealed the formation of similar surface active species for all the prepared catalytic supports. These characterizations guided us to study and propose a comprehensive mechanism of metathesis products formation pathways as well as the metathesis catalytic cycle, demonstrating the steric hindrance effect on the catalysts interface that governed the reaction selectivity. The synthesis of the 3 wt.% MTO/ZnCl2-OMA catalysts allowed us to efficiently perform metathesis reaction using renewable feedstock (e.g. fatty acid esters derived from vegetable oils), offering access to a variety of functionalized monomers which could be used for further transformations such as the synthesis of value-added bio-based polymers (e.g. bioplastics, biosurfactants)
Silica and Silicon Based Nanostructures
Silica and silicon-based nanostructures are now well-understood materials for which the technologies are mature. The most obvious applications, such as electronic devices, have been widely explored over the last two decades. The aim of this Special Issue is to bring together the state of the art in the field and to enable the emergence of new ideas and concepts for silicon and silica-based nanostructures
MOF-based Polymeric Membranes for CO2 Capture
El dióxido de carbono (CO2) es uno de los contaminantes más importantes a nivel industrial. Debido al aumento de las emisiones de este gas de efecto invernadero, disminuir su concentración atmosférica se ha convertido en uno de los retos medioambientales más importantes. Además, el CO2 es también un contaminante presente en combustibles como el gas natural o el biogás, siendo necesaria su eliminación para obtener un combustible limpio que cumpla con las especificaciones del mercado. La tecnología actual para la separación del CO2 comprende la absorción química, la adsorción física y la destilación criogénica, todos ellos procesos con una alta penalización energética. La tecnología de membranas supone una alternativa atractiva por su bajo consumo energético, su baja huella de carbono y su facilidad de operación y escalado.El objetivo principal de esta tesis doctoral ha sido el de desarrollar membranas mejoradas para la separación del CO2. Gran parte de la investigación se ha centrado en la separación de H2/CO2 (mezclas de precombustión), pero también se han tratado mezclas de poscombustión (CO2/N2) y de gas natural y biogás (CO2/CH4). Estas membranas se han preparado a partir de polímeros con buenas propiedades de separación para la mezcla a tratar. Los polímeros elegidos para la mezcla H2/CO2 han sido la Matrimid®, el polibezimidazol (PBI) y la poliamida (PA) formada por la reacción de TMC con MPD. Las separación de mezclas de poscombustión y biogás se ha estudiado con membranas de PIM-1, PIM-EA(H2)-TB, 6FDA-DAM y Pebax® 1657.Para conseguir mejorar la capacidad de separación intrínseca de estos polímeros, se han preparado sistemas multicomponentes en forma de membranas mixtas (mixed matrix membranes o MMMs). Estas membranas han consistido en la dispersión de MOF en la fase continua constituida por la matriz polimérica, de manera que la permeabilidad y selectividad de las membranas aumentaba por la combinación sinérgica de ambas fases. Los MOF son materiales altamente cristalinos formados por la coordinación de iones o clústeres metálicos con ligandos orgánicos. Su naturaleza parcialmente orgánica hace que muestren una gran compatibilidad con las cadenas poliméricas convirtiéndolo en una fase dispersa ideal.En el capítulo 4 se ha explicado el uso de membranas de Matrimid® para la separación de mezclas H2/CO2, donde el ZIF-11 es utilizado como material de relleno para desarrollar MMMs. Sin embargo, ha sido el PBI el polímero más usado en esta tesis para la captura en precombustión. La preparación de MMMs de PBI con ZIF-8 como material de relleno se detalla en el capítulo 5, donde la influencia del tamaño de partícula y su incorporación en estado húmedo o seco han sido estudiadas. Además, la reproducibilidad de los resultados se confirmó mediante un Round Robin test llevado a cabo entre tres instituciones europeas. El ZIF-11 también se ha utilizado como material de relleno con el PBI y la mejora en la capacidad de separación de las memrbanas se muestra en el capítulo 6. Aunque se han utilizado MOF existentes para la preparación de MMMs, también se ha realizado un gran esfuerzo en esta tesis doctoral para desarrollar nuevas estructuras con una compatibilidad mejorada con los polímeros. Así en el capítulo 4 se muestra la síntesis de ZIF-11 nanométrico (nZIF-11) con un tamaño de partícula de 36±6 nm. Este material se ha obtenido siguiendo una nueva ruta de síntesis basada en la centrifugación, que permitió la formación de partículas mucho más pequeñas que las del ZIF-11 tradicional (1.9±0.9 µm) pero manteniendo la misma composición química, estabilidad térmica y propiedades de adsorción de H2 y CO2. Su uso como material de relleno en Matrimid® y PBI se detalla en los capítulos 4 y 6, respectivamente. Además en este último se han estudiado los cambios en la morfología del material.Los esfuerzos para obtener nuevos MOF se han centrado también en la síntesis de materiales híbridos. El capítulo 7 explica la formación de core-shells de ZIF-7/8 mediante la modificación postsintética del ZIF-8 con bezimidazol. Esta reacción ha concluido con la conversión completa del ZIF-8 en ZIF-7 y ha sido monitorizada por cromatografía de gases-espectroscopía de masas, cuantificando la cantidad de 2-metilimidazol liberada. Esto ha permitido el ajuste de la reacción al modelo cinético de núcleo decreciente, proveyendo datos de coeficiente de difusión del bezimidazol en el interior de los poros y de la constante cinética de la reacción. El modelo cinético permitió definir con gran precisión las condiciones de reacción para obtener una gran variedad de compuestos híbridos con un tamaño de partícula de alrededor de 124 nm. También se han desarrollado nanopartículas de ZIF-93/11 (72-73 nm) en el capítulo 8. Este ZIF híbrido se obtuvo por la modificación postsintética del ZIF-93 en una disolución de benzimidazol, pero al contrario que con el ZIF-7/8 la reacción no era completa. El uso de distintos disolventes (MeOH y DMAc) y tiempos de reacción dieron lugar a diferencias en la cantidad de benzimidazol incorporada, del 7,4 al 23 % en peso. La presencia de dos ligandos se constató mediante diferentes técnicas de caracterización en ambos híbridos: TGA, adsorción de gases, XRD, XPS y RMN. Ambos híbridos se han utilizado como material de relleno en membranas de PBI, y la capacidad de separación de mezclas H2/CO2 se compara con la de las MMMs conteniendo MOF puros (ZIF-7, ZIF-8, ZIF-11 y ZIF-93) en los capítulos correspondientes.Además de añadiendo nanopartículas, la capacidad de separación de los polímeros se ha mejorado reduciendo el espesor de las membranas en favor de flujos de permeación más altos. Así en el capítulo 9 se han desarrollado membranas asimétricas de PBI sobre soportes de P84®. Estas membranas se han preparado por inversión de fases, obteniéndose capas selectivas de 1 µm de espesor que mostraban capacidades de separación sin precedentes para mezclas de precombustión, muy superiores a las de las membranas densas en condiciones de operación intensivas (250 °C y 6 bar). Estas membranas de PBI también se han optimizado en el capítulo 10 con un blending con PIM-EA(H2)-TB. La mezcla homogénea de ambos polímeros consiguió mejora la permeación de los gases en comparación con la de las membranas asimétricas de PBI.Las membranas con el espesor más fino obtenidas fueron las de tipo soportado desarrolladas en el capítulo 11. Consistían en una capa de 50-100 nm de PA, sintetizada mediante la polimerización interfacial de MPD con TMC, con nanopartículas de ZIF-8 embebidas es ella. Estas membranas mostraron una capacidad de separación extraordinaria con flujos de permeado tan altos que se podía prescindir del gas de barrido para su medida. También mostraron una gran estabilidad térmica, ya que mantenían la capacidad de separación tras siete días operando en continuo a 180 °C.La capacidad del ZIF-7, el ZIF-8 y las core-shell de ZIF-7/8 para la separación de mezclas H2/CO2 se demuestra en el capítulo 12 con la preparación de Polymer-Stabilized Percolation Membranes (PSPM), que consisten en la compresión del ZIF en polvo en pellets que posteriormente se infiltran y estabilizan con una resina epoxi impermeable al gas, de manera que se obtiene una red de percolación selectiva al flujo de gas donde solo el ZIF es responsable de la separación. Por último, las membranas aplicadas para poscombustión y purificación de biogás se explican en los capítulos 13 y 14. El capítulo 13 muestra la preparación de MMMs para la separación de mezclas CO2/N2 y CO2/CH4 mediante blends heterogéneos de PIM-1 y 6FDA-DAM con ZIF-8 como material de relleno. Las nanopartículas mostraban una mejor compatibilidad con el 6FDA-DAM que con el PIM-1, alojándose de manera preferencial cerca de la interfase entre polímeros, lo que ayudaba a la dispersión del material de relleno. El capítulo 14 detalla la preparación de MMMs finas (espesor de 2-3 µm) de Pebax® 1657 sobre P84® y politrimetilsililpropino (PTMSP). Nanopartículas de: ZIF-8, MIL-101(Cr), UiO-66 y ZIF-7/8 fueron elegidas como material de relleno, ya que todos ellos son MOF con alta capacidad de adsorción de CO2 pero con diferente distribución de tamaño de poro. Estas membranas fueron utilizadas para la separación de mezclas de CO2/CH4 y se observó una compatibilidad sinérgica entre el Pebax® 1657 y el P84®.Además del trabajo experimental, varios modelos matemáticos se han desarrollado en esta tesis para entender el flujo de gas a través de las membranas preparadas. En el capítulo 6 el modelo de Maxwell-Wagner-Sillar se ha utilizado para calcular las permeabilidades de H2 y CO2 a través del nZIF-11 y el ZIF-11. En el capítulo 9 se ha aplicado un modelo de resistencias en serie para explicar el flujo de gas a través de las membranas asimétricas de PBI. El capítulo 10 muestra un modelo empírico donde se correlaciona la influencia entre la cantidad de PIM en el blend y la presión de alimentación en la capacidad de separación de las membranas. Por último, se ha propuesto en el capítulo 13 un modelo de Maxwell acoplado para modelar la permeabilidad de los gases a través de los blends de PIM-1/6FDA-DAM. Con este modelo también se han calculado las propiedades de separación del ZIF-8.<br /
- …
