1,837 research outputs found

    Enabling precise traffic filtering based on protocol encapsulation rules

    Get PDF
    Current packet filters have a limited support for expressions based on protocol encapsulation relationships and some constraints are not supported at all, such as the value of the IP source address in the inner header of an IP-in-IP packet. This limitation may be critical for a wide range of packet filtering applications, as the number of possible encapsulations is steadily increasing and network operators cannot define exactly which packets they are interested in. This paper proposes a new formalism, called eXtended Finite State Automata with Predicates (xpFSA), that provides an efficient implementation of filtering expressions, supporting both constraints on protocol encapsulations and the composition of multiple filtering expressions. Furthermore, it defines a novel algorithm that can be used to automatically detect tunneled packets. Our algorithms are validated through a large set of tests assessing both the performance of the filtering generation process and the efficiency of the actual packet filtering code when dealing with real network packets

    Filtering Network Traffic Based on Protocol Encapsulation Rules

    Get PDF
    Packet filtering is a technology at the foundation of many traffic analysis tasks. While languages and tools for packet filtering have been available for many years, none of them supports filters operating on the encapsulation relationships found in each packet. This represents a problem as the number of possible encapsulations used to transport traffic is steadily increasing and we cannot define exactly which packets have to be captured. This paper presents our early work on an algorithm that models protocol filtering patterns (including encapsulation constraints) as Finite State Automata and supports the composition of multiple expressions within the same filter. The resulting, optimized filter is then translated into executable code. The above filtering algorithms are available in the NetBee open source library, which provides some basic tools for handling network packets (e.g., a tcpdump-like program) and APIs to build more advanced tool

    A Tunnel-aware Language for Network Packet Filtering

    Get PDF
    Abstract—While in computer networks the number of possible protocol encapsulations is growing day after day, network administrators face ever increasing difficulties in selecting accurately the traffic they need to inspect. This is mainly caused by the limited number of encapsulations supported by currently available tools and the difficulty to exactly specify which packets have to be analyzed, especially in presence of tunneled traffic. This paper presents a novel packet processing language that, besides Boolean filtering predicates, introduces special constructs for handling the more complex situations of tunneled and stacked encapsulations, giving the user a finer control over the semantics of a filtering expression. Even though this language is principally focused on packet filters, it is designed to support other advanced packet processing mechanisms such as traffic classification and field extraction. I

    Modeling Complex Packet Filters with Finite State Automata

    Get PDF
    Designing an efficient and scalable packet filter for modern computer networks becomes each day more challenging: faster link speeds, the steady increase in the number of encapsulation rules (e.g., tunneling) and the necessity to precisely isolate a given subset of traffic cause filtering expressions to become more complex than in the past. Most of current packet filtering mechanisms cannot deal with those requirements because their optimization algorithms either cannot scale with the increased size of the filtering code, or exploit simple domain-specific optimizations that cannot guarantee to operate properly in case of complex filters. This paper presents pFSA, a new model that transforms packet filters into Finite State Automata and guarantees the optimal number of checks on the packet, also in case of multiple filters composition, hence enabling efficiency and scalability without sacrificing filtering computation time

    The Use of Firewalls in an Academic Environment

    No full text

    NetPDL: An Extensible XML-Based Language for Packet Header Description

    Get PDF
    Although several applications need to know the format of network packets to perform their tasks, till now, each application uses its own packet description database. This paper addresses this problem by proposing the NetPDL, an XML-based language for describing packet headers, which has the potential of enabling the realization of a common, application-independent protocol description database that can be shared among several applications. Further, common functionalities related to the protocol database can be implemented in a library, which can be a basic building block for implementing networking applications
    corecore