215 research outputs found

    Homogeneous Spiking Neuromorphic System for Real-World Pattern Recognition

    Get PDF
    A neuromorphic chip that combines CMOS analog spiking neurons and memristive synapses offers a promising solution to brain-inspired computing, as it can provide massive neural network parallelism and density. Previous hybrid analog CMOS-memristor approaches required extensive CMOS circuitry for training, and thus eliminated most of the density advantages gained by the adoption of memristor synapses. Further, they used different waveforms for pre and post-synaptic spikes that added undesirable circuit overhead. Here we describe a hardware architecture that can feature a large number of memristor synapses to learn real-world patterns. We present a versatile CMOS neuron that combines integrate-and-fire behavior, drives passive memristors and implements competitive learning in a compact circuit module, and enables in-situ plasticity in the memristor synapses. We demonstrate handwritten-digits recognition using the proposed architecture using transistor-level circuit simulations. As the described neuromorphic architecture is homogeneous, it realizes a fundamental building block for large-scale energy-efficient brain-inspired silicon chips that could lead to next-generation cognitive computing.Comment: This is a preprint of an article accepted for publication in IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol 5, no. 2, June 201

    Analog Spiking Neuromorphic Circuits and Systems for Brain- and Nanotechnology-Inspired Cognitive Computing

    Get PDF
    Human society is now facing grand challenges to satisfy the growing demand for computing power, at the same time, sustain energy consumption. By the end of CMOS technology scaling, innovations are required to tackle the challenges in a radically different way. Inspired by the emerging understanding of the computing occurring in a brain and nanotechnology-enabled biological plausible synaptic plasticity, neuromorphic computing architectures are being investigated. Such a neuromorphic chip that combines CMOS analog spiking neurons and nanoscale resistive random-access memory (RRAM) using as electronics synapses can provide massive neural network parallelism, high density and online learning capability, and hence, paves the path towards a promising solution to future energy-efficient real-time computing systems. However, existing silicon neuron approaches are designed to faithfully reproduce biological neuron dynamics, and hence they are incompatible with the RRAM synapses, or require extensive peripheral circuitry to modulate a synapse, and are thus deficient in learning capability. As a result, they eliminate most of the density advantages gained by the adoption of nanoscale devices, and fail to realize a functional computing system. This dissertation describes novel hardware architectures and neuron circuit designs that synergistically assemble the fundamental and significant elements for brain-inspired computing. Versatile CMOS spiking neurons that combine integrate-and-fire, passive dense RRAM synapses drive capability, dynamic biasing for adaptive power consumption, in situ spike-timing dependent plasticity (STDP) and competitive learning in compact integrated circuit modules are presented. Real-world pattern learning and recognition tasks using the proposed architecture were demonstrated with circuit-level simulations. A test chip was implemented and fabricated to verify the proposed CMOS neuron and hardware architecture, and the subsequent chip measurement results successfully proved the idea. The work described in this dissertation realizes a key building block for large-scale integration of spiking neural network hardware, and then, serves as a step-stone for the building of next-generation energy-efficient brain-inspired cognitive computing systems

    The Landscape of Compute-near-memory and Compute-in-memory: A Research and Commercial Overview

    Full text link
    In today's data-centric world, where data fuels numerous application domains, with machine learning at the forefront, handling the enormous volume of data efficiently in terms of time and energy presents a formidable challenge. Conventional computing systems and accelerators are continually being pushed to their limits to stay competitive. In this context, computing near-memory (CNM) and computing-in-memory (CIM) have emerged as potentially game-changing paradigms. This survey introduces the basics of CNM and CIM architectures, including their underlying technologies and working principles. We focus particularly on CIM and CNM architectures that have either been prototyped or commercialized. While surveying the evolving CIM and CNM landscape in academia and industry, we discuss the potential benefits in terms of performance, energy, and cost, along with the challenges associated with these cutting-edge computing paradigms

    Neuro-memristive Circuits for Edge Computing: A review

    Full text link
    The volume, veracity, variability, and velocity of data produced from the ever-increasing network of sensors connected to Internet pose challenges for power management, scalability, and sustainability of cloud computing infrastructure. Increasing the data processing capability of edge computing devices at lower power requirements can reduce several overheads for cloud computing solutions. This paper provides the review of neuromorphic CMOS-memristive architectures that can be integrated into edge computing devices. We discuss why the neuromorphic architectures are useful for edge devices and show the advantages, drawbacks and open problems in the field of neuro-memristive circuits for edge computing

    Applications of memristors in conventional analogue electronics

    Get PDF
    This dissertation presents the steps employed to activate and utilise analogue memristive devices in conventional analogue circuits and beyond. TiO2 memristors are mainly utilised in this study, and their large variability in operation in between similar devices is identified. A specialised memristor characterisation instrument is designed and built to mitigate this issue and to allow access to large numbers of devices at a time. Its performance is quantified against linear resistors, crossbars of linear resistors, stand-alone memristive elements and crossbars of memristors. This platform allows for a wide range of different pulsing algorithms to be applied on individual devices, or on crossbars of memristive elements, and is used throughout this dissertation. Different ways of achieving analogue resistive switching from any device state are presented. Results of these are used to devise a state-of-art biasing parameter finder which automatically extracts pulsing parameters that induce repeatable analogue resistive switching. IV measurements taken during analogue resistive switching are then utilised to model the internal atomic structure of two devices, via fittings by the Simmons tunnelling barrier model. These reveal that voltage pulses modulate a nano-tunnelling gap along a conical shape. Further retention measurements are performed which reveal that under certain conditions, TiO2 memristors become volatile at short time scales. This volatile behaviour is then implemented into a novel SPICE volatile memristor model. These characterisation methods of solid-state devices allowed for inclusion of TiO2 memristors in practical electronic circuits. Firstly, in the context of large analogue resistive crossbars, a crosspoint reading method is analysed and improved via a 3-step technique. Its scaling performance is then quantified via SPICE simulations. Next, the observed volatile dynamics of memristors are exploited in two separate sequence detectors, with applications in neuromorphic engineering. Finally, the memristor as a programmable resistive weight is exploited to synthesise a memristive programmable gain amplifier and a practical memristive automatic gain control circuit.Open Acces

    A Compact CMOS Memristor Emulator Circuit and its Applications

    Full text link
    Conceptual memristors have recently gathered wider interest due to their diverse application in non-von Neumann computing, machine learning, neuromorphic computing, and chaotic circuits. We introduce a compact CMOS circuit that emulates idealized memristor characteristics and can bridge the gap between concepts to chip-scale realization by transcending device challenges. The CMOS memristor circuit embodies a two-terminal variable resistor whose resistance is controlled by the voltage applied across its terminals. The memristor 'state' is held in a capacitor that controls the resistor value. This work presents the design and simulation of the memristor emulation circuit, and applies it to a memcomputing application of maze solving using analog parallelism. Furthermore, the memristor emulator circuit can be designed and fabricated using standard commercial CMOS technologies and opens doors to interesting applications in neuromorphic and machine learning circuits.Comment: Submitted to International Symposium of Circuits and Systems (ISCAS) 201
    corecore