2 research outputs found

    Uniform and scalable SAT-sampling for configurable systems

    Get PDF
    Several relevant analyses on configurable software systems remain intractable because they require examining vast and highly-constrained configuration spaces. Those analyses could be addressed through statistical inference, i.e., working with a much more tractable sample that later supports generalizing the results obtained to the entire configuration space. To make this possible, the laws of statistical inference impose an indispensable requirement: each member of the population must be equally likely to be included in the sample, i.e., the sampling process needs to be "uniform". Various SAT-samplers have been developed for generating uniform random samples at a reasonable computational cost. Unfortunately, there is a lack of experimental validation over large configuration models to show whether the samplers indeed produce genuine uniform samples or not. This paper (i) presents a new statistical test to verify to what extent samplers accomplish uniformity and (ii) reports the evaluation of four state-of-the-art samplers: Spur, QuickSampler, Unigen2, and Smarch. According to our experimental results, only Spur satisfies both scalability and uniformity.Ministerio de Ciencia, Innovación y Universidades VITAL-3D DPI2016-77677-PMinisterio de Ciencia, Innovación y Universidades OPHELIA RTI2018-101204-B-C22Comunidad Autónoma de Madrid CAM RoboCity2030 S2013/MIT-2748Agencia Estatal de Investigación TIN2017-90644-RED

    Uniform and scalable sampling of highly configurable systems

    Get PDF
    Many analyses on confgurable software systems are intractable when confronted with colossal and highly-constrained confguration spaces. These analyses could instead use statistical inference, where a tractable sample accurately predicts results for the entire space. To do so, the laws of statistical inference requires each member of the population to be equally likely to be included in the sample, i.e., the sampling process needs to be “uniform”. SAT-samplers have been developed to generate uniform random samples at a reasonable computational cost. However, there is a lack of experimental validation over colossal spaces to show whether the samplers indeed produce uniform samples or not. This paper (i) proposes a new sampler named BDDSampler, (ii) presents a new statistical test to verify sampler uniformity, and (iii) reports the evaluation of BDDSampler and fve other state-of-the-art samplers: KUS, QuickSampler, Smarch, Spur, and Unigen2. Our experimental results show only BDDSampler satisfes both scalability and uniformity.Universidad Nacional de Educación a Distancia (UNED) OPTIVAC 096-034091 2021V/PUNED/008Ministerio de Ciencia, Innovación y Universidades RTI2018-101204-B-C22 (OPHELIA)Comunidad Autónoma de Madrid ROBOCITY2030-DIH-CM S2018/NMT-4331Agencia Estatal de Investigación TIN2017-90644-RED
    corecore