10,826 research outputs found

    An elastic software architecture for extreme-scale big data analytics

    Get PDF
    This chapter describes a software architecture for processing big-data analytics considering the complete compute continuum, from the edge to the cloud. The new generation of smart systems requires processing a vast amount of diverse information from distributed data sources. The software architecture presented in this chapter addresses two main challenges. On the one hand, a new elasticity concept enables smart systems to satisfy the performance requirements of extreme-scale analytics workloads. By extending the elasticity concept (known at cloud side) across the compute continuum in a fog computing environment, combined with the usage of advanced heterogeneous hardware architectures at the edge side, the capabilities of the extreme-scale analytics can significantly increase, integrating both responsive data-in-motion and latent data-at-rest analytics into a single solution. On the other hand, the software architecture also focuses on the fulfilment of the non-functional properties inherited from smart systems, such as real-time, energy-efficiency, communication quality and security, that are of paramount importance for many application domains such as smart cities, smart mobility and smart manufacturing.The research leading to these results has received funding from the European Union’s Horizon 2020 Programme under the ELASTIC Project (www.elastic-project.eu), grant agreement No 825473.Peer ReviewedPostprint (published version

    Storage Solutions for Big Data Systems: A Qualitative Study and Comparison

    Full text link
    Big data systems development is full of challenges in view of the variety of application areas and domains that this technology promises to serve. Typically, fundamental design decisions involved in big data systems design include choosing appropriate storage and computing infrastructures. In this age of heterogeneous systems that integrate different technologies for optimized solution to a specific real world problem, big data system are not an exception to any such rule. As far as the storage aspect of any big data system is concerned, the primary facet in this regard is a storage infrastructure and NoSQL seems to be the right technology that fulfills its requirements. However, every big data application has variable data characteristics and thus, the corresponding data fits into a different data model. This paper presents feature and use case analysis and comparison of the four main data models namely document oriented, key value, graph and wide column. Moreover, a feature analysis of 80 NoSQL solutions has been provided, elaborating on the criteria and points that a developer must consider while making a possible choice. Typically, big data storage needs to communicate with the execution engine and other processing and visualization technologies to create a comprehensive solution. This brings forth second facet of big data storage, big data file formats, into picture. The second half of the research paper compares the advantages, shortcomings and possible use cases of available big data file formats for Hadoop, which is the foundation for most big data computing technologies. Decentralized storage and blockchain are seen as the next generation of big data storage and its challenges and future prospects have also been discussed

    Mapping Big Data into Knowledge Space with Cognitive Cyber-Infrastructure

    Full text link
    Big data research has attracted great attention in science, technology, industry and society. It is developing with the evolving scientific paradigm, the fourth industrial revolution, and the transformational innovation of technologies. However, its nature and fundamental challenge have not been recognized, and its own methodology has not been formed. This paper explores and answers the following questions: What is big data? What are the basic methods for representing, managing and analyzing big data? What is the relationship between big data and knowledge? Can we find a mapping from big data into knowledge space? What kind of infrastructure is required to support not only big data management and analysis but also knowledge discovery, sharing and management? What is the relationship between big data and science paradigm? What is the nature and fundamental challenge of big data computing? A multi-dimensional perspective is presented toward a methodology of big data computing.Comment: 59 page

    Autonomous Threat Hunting: A Future Paradigm for AI-Driven Threat Intelligence

    Full text link
    The evolution of cybersecurity has spurred the emergence of autonomous threat hunting as a pivotal paradigm in the realm of AI-driven threat intelligence. This review navigates through the intricate landscape of autonomous threat hunting, exploring its significance and pivotal role in fortifying cyber defense mechanisms. Delving into the amalgamation of artificial intelligence (AI) and traditional threat intelligence methodologies, this paper delineates the necessity and evolution of autonomous approaches in combating contemporary cyber threats. Through a comprehensive exploration of foundational AI-driven threat intelligence, the review accentuates the transformative influence of AI and machine learning on conventional threat intelligence practices. It elucidates the conceptual framework underpinning autonomous threat hunting, spotlighting its components, and the seamless integration of AI algorithms within threat hunting processes.. Insightful discussions on challenges encompassing scalability, interpretability, and ethical considerations in AI-driven models enrich the discourse. Moreover, through illuminating case studies and evaluations, this paper showcases real-world implementations, underscoring success stories and lessons learned by organizations adopting AI-driven threat intelligence. In conclusion, this review consolidates key insights, emphasizing the substantial implications of autonomous threat hunting for the future of cybersecurity. It underscores the significance of continual research and collaborative efforts in harnessing the potential of AI-driven approaches to fortify cyber defenses against evolving threats

    Cold Storage Data Archives: More Than Just a Bunch of Tapes

    Full text link
    The abundance of available sensor and derived data from large scientific experiments, such as earth observation programs, radio astronomy sky surveys, and high-energy physics already exceeds the storage hardware globally fabricated per year. To that end, cold storage data archives are the---often overlooked---spearheads of modern big data analytics in scientific, data-intensive application domains. While high-performance data analytics has received much attention from the research community, the growing number of problems in designing and deploying cold storage archives has only received very little attention. In this paper, we take the first step towards bridging this gap in knowledge by presenting an analysis of four real-world cold storage archives from three different application domains. In doing so, we highlight (i) workload characteristics that differentiate these archives from traditional, performance-sensitive data analytics, (ii) design trade-offs involved in building cold storage systems for these archives, and (iii) deployment trade-offs with respect to migration to the public cloud. Based on our analysis, we discuss several other important research challenges that need to be addressed by the data management community
    • …
    corecore