635 research outputs found

    Contextual Model-Based Collaborative Filtering for Recommender Systems

    Get PDF
    Recommender systems have dramatically changed the way we consume content. Internet applications rely on these systems to help users navigate among the ever-increasing number of choices available. However, most current systems ignore that user preferences can change according to context, resulting in recommendations that do not fit user interests. Context-aware models have been proposed to address this issue, but these models have problems of their own. The ever-increasing speed at which data are generated presents a scalability challenge for single-model approaches. Moreover, the complexity of these models prevents small players from adapting and implementing contextual models that meet their needs. This thesis addresses these issues by proposing the (CF)2 architecture, which uses local learning techniques to embed contextual awareness into collaborative filtering (CF) models. CF has been available for decades, and its methods and benefits have been extensively discussed and implemented. Moreover, the use of context as filtering criteria for local learning addresses the scalability issues caused by the use of large datasets. Therefore, the proposed architecture enables the creation of contextual recommendations using several models instead of one, with each model representing a context. In addition, the architecture is implemented and evaluated in two case studies. Results show that contextual models trained with a small fraction of the data resulted in similar or better accuracy compared to CF models trained with the total dataset. Moreover, experiments indicate that local learning using contextual information outperforms random selection in accuracy and in training time

    A Cross-Domain Recommender System with Kernel-Induced Knowledge Transfer for Overlapping Entities

    Full text link
    © 2012 IEEE. The aim of recommender systems is to automatically identify user preferences within collected data, then use those preferences to make recommendations that help with decisions. However, recommender systems suffer from data sparsity problem, which is particularly prevalent in newly launched systems that have not yet had enough time to amass sufficient data. As a solution, cross-domain recommender systems transfer knowledge from a source domain with relatively rich data to assist recommendations in the target domain. These systems usually assume that the entities either fully overlap or do not overlap at all. In practice, it is more common for the entities in the two domains to partially overlap. Moreover, overlapping entities may have different expressions in each domain. Neglecting these two issues reduces prediction accuracy of cross-domain recommender systems in the target domain. To fully exploit partially overlapping entities and improve the accuracy of predictions, this paper presents a cross-domain recommender system based on kernel-induced knowledge transfer, called KerKT. Domain adaptation is used to adjust the feature spaces of overlapping entities, while diffusion kernel completion is used to correlate the non-overlapping entities between the two domains. With this approach, knowledge is effectively transferred through the overlapping entities, thus alleviating data sparsity issues. Experiments conducted on four data sets, each with three sparsity ratios, show that KerKT has 1.13%-20% better prediction accuracy compared with six benchmarks. In addition, the results indicate that transferring knowledge from the source domain to the target domain is both possible and beneficial with even small overlaps

    Coupling multiple views of relations for recommendation

    Full text link
    © Springer International Publishing Switzerland 2015. Learning user/item relation is a key issue in recommender system, and existing methods mostly measure the user/item relation from one particular aspect, e.g., historical ratings, etc. However, the relations between users/items could be influenced by multifaceted factors, so any single type of measure could get only a partial view of them. Thus it is more advisable to integrate measures from different aspects to estimate the underlying user/item relation. Furthermore, the estimation of underlying user/item relation should be optimal for current task. To this end, we propose a novel model to couple multiple relations measured on different aspects, and determine the optimal user/item relations via learning the optimal way of integrating these relation measures. Specifically, matrix factorization model is extended in this paper by considering the relations between latent factors of different users/items. Experiments are conducted and our method shows good performance and outperforms other baseline methods
    • …
    corecore