1 research outputs found

    Enabling Intra-Plane Parallel Block Erase to Alleviate the Impact of Garbage Collection

    Get PDF
    Garbage collection (GC) in NAND flash can significantly decrease I/O performance in SSDs by copying valid data to other locations, thus blocking incoming I/O requests. To help improve performance, NAND flash utilizes various advanced commands to increase internal parallelism. Currently, these commands only parallelize operations across channels, chips, dies, and planes, neglecting the block-level and below due structural bottlenecks along the data path and risk of disturbances that can compromise valid data by inducing errors. However, due to the triple-well structure of the NAND flash plane architecture and erasing procedure, it is possible to erase multiple blocks within a plane, in parallel, without being restricted by structural limitations or diminishing the integrity of the valid data. The number of page movements due to multiple block erases can be restrained so as to bound the overhead per GC. Moreover, more capacity can be reclaimed per GC which delays future GCs and effectively reduces their frequency. Such an Intra-Plane Parallel Block Erase (IPPBE) in turn diminishes the impact of GC on incoming requests, improving their response times. Experimental results show that IPPBE can reduce the time spent performing GC by up to 50.7% and 33.6% on average, read/write response time by up to 47.0%/45.4% and 16.5%/14.8% on average respectively, page movements by up to 52.2% and 26.6% on average, and blocks erased by up to 14.2% and 3.6% on average. An energy analysis conducted indicates that by reducing the number of page copies and the number of block erases, the energy cost of garbage collection can be reduced up to 44.1% and 19.3% on average
    corecore