15,499 research outputs found
Production of lipopeptide biosurfactant by Kurthia gibsonii KH2 and their synergistic action in biodecolourisation of textile wastewater
Textile dyes are recalcitrant molecules and contain a high level of chemicals and colour
which poses a serious challenge to surrounding environments. Therefore, this study
aims to produce biosurfactant and investigate the synergistic action on decolourisation
of textile dyes by the combination of bacteria and biosurfactant. An effective dye
degrading strain and biosurfactant-producer, Kurthia gibsonii KH2, was isolated from
textile wastewater using molasses as the only source of carbon and energy. The isolates
were identified and screened for biosurfactant production using haemolytic activity,
oil spreading technique, drop collapse test and emulsification index. Fourier Transform
Infrared Spectrum (FTIR) and Thin Layer Chromatography (TLC) analyses were carried out
to detect the type of biosurfactant. The effect of different physicochemical parameters
on textile wastewater decolourisation was assessed within 24 h. The Kurthia gibsonii
KH2 showed positive results for haemolytic activity, oil spreading technique, and drop
collapse test. The emulsification test (E24) revealed that Kurthia gibsonii KH2 had a
higher emulsification index of 63%. FTIR and TLC analyses indicated that the biosurfactant
was a lipopeptide and was formed with a yield of 2 gL−1. The synergistic activity of
Kurthia gibsonii KH2 and lipopeptide biosurfactant resulted in decolourisation levels
of 85% at 100 mg/L concentration and pH 7 was recorded at 168 h of incubation.
The high attributes of these combinations and the phytotoxicity tests implied that the
metabolites were less toxic, making it a promising option for the biodecolourisation and
biodegradation of industrial textile wastewater and various environmental conditions
Self-assembly of Tween 80 micelles as nanocargos for oregano and trans-cinnamaldehyde plant-derived compounds
The self-assembly of Tween 80 (T80) micelles loaded with plant-based oregano essential oil (OR) and trans-cinnamaldehyde (TCA) was studied. The effect of different factors, including the surfactant to oil ratio, the presence of sodium chloride, thermal treatment, and dilution on their formation and physicochemical stability was evaluated. The creation of nano-cargos was confirmed by TEM. The self-associated structures had z-average droplet diameters of 92 to 337 nm without any energy input. Whereas addition of 10% (w/v) NaCl prevented the formation of oregano essential oil nano-assemblies of T80, swollen micelles containing TCA were successfully produced. Moreover, the OR or TCA loaded-micelles had only a slight droplet size variation upon thermal treatment. Ultimately, their antibacterial activity analysis against some food pathogens revealed that the encapsulation of OR and TCA within micelles crucially improved their antibacterial activity. These straightforward and cost-effective designed systems can be applicable in different products, including foods and agrochemicals
DNA-coated Functional Oil Droplets
Many industrial soft materials often include oil-in-water (O/W) emulsions at
the core of their formulations. By using tuneable interface stabilizing agents,
such emulsions can self-assemble into complex structures. DNA has been used for
decades as a thermoresponsive highly specific binding agent between hard and,
recently, soft colloids. Up until now, emulsion droplets functionalized with
DNA had relatively low coating densities and were expensive to scale up. Here a
general O/W DNA-coating method using functional non-ionic amphiphilic block
copolymers, both diblock and triblock, is presented. The hydrophilic
polyethylene glycol ends of the surfactants are functionalized with azides,
allowing for efficient, dense and controlled coupling of dibenzocyclooctane
functionalized DNA to the polymers through a strain-promoted alkyne-azide click
reaction. The protocol is readily scalable due to the triblock's commercial
availability. Different production methods (ultrasonication, microfluidics and
membrane emulsification) are used with different oils (hexadecane and silicone
oil) to produce functional droplets in various size ranges (sub-micron, and ), showcasing the generality of
the protocol. Thermoreversible sub-micron emulsion gels, hierarchical
"raspberry" droplets and controlled droplet release from a flat DNA-coated
surface are demonstrated. The emulsion stability and polydispersity is
evaluated using dynamic light scattering and optical microscopy. The generality
and simplicity of the method opens up new applications in soft matter and
biotechnological research and industrial advances.Comment: 7 pages, 2 figures, 1 tabl
Emulsions stabilised by whey protein microgel particles: Towards food-grade Pickering emulsions
We have investigated a new class of food-grade particles, whey protein microgels, as stabilisers of triglyceride-water emulsions. The sub-micron particles stabilized oil-in-water emulsions at all pH with and without salt. All emulsions creamed but exhibited exceptional resistance to coalescence. Clear correlations exist between the properties of the microgels in aqueous dispersion and the resulting emulsion characteristics. For conditions in which the particles were uncharged, fluid emulsions with relatively large drops were stabilised, whereas emulsions stabilized by charged particles contained smaller flocculated drops. A combination of optical microscopy of the drops and spectrophotometry of the resolved aqueous phase allowed us to estimate the interfacial adsorption densities of the particles using the phenomenon of limited coalescence. We deduce two classes of particle arrangement. Complete adsorption of the particles was obtained when they were neutral or when their charges were screened by salt resulting in at least one particle monolayer at the interface. By contrast, only around 50% of the particles adsorbed when they were charged with emulsion drops being covered by less than half a monolayer. These findings were supported by direct visualization of drop interfaces using cryo-scanning electron microscopy. Uncharged particles were highly aggregated and formed a continuous 2-D network at the interface. Otherwise particles organized as individual aggregates separated by particle-free regions. In this case, we suggest that some particles spread at the interface leading to the formation of a continuous protein membrane. Charged particles displayed the ability to bridge opposing interfaces of neighbouring drops to form dense particle disks protecting drops against coalescence; this is the main reason for the flocculation and stability of emulsions containing sparsely covered drops. © 2014 the Partner Organisations
"In vitro" evaluation of some properties in spore former bacteria isolated from calves faeces
Aims: To isolate and evaluate spore-former bacteria for being used as probiotic additives in animal nutrition by their technological features.
Study Design: The study was experimental, by using calves’ faeces for spore-forming identification and further evaluation of their “in vitro” probiotic-related properties.
Place and Duration of Study: Laboratory of Preventive Microbiology, Centro de Referencia para Lactobacilos (CERELA-CONICET), between June 2013 and November 2013.
Methodology: In this work, some Bacillus strains were isolated from calves’ faeces and evaluated for their “in vitro” beneficial characteristics: Surface properties, biosurfactant and emulsification production, and inhibition of pathogens. The antibiotic sensibility was also assayed.
Results: Two Bacillus strains were selected, identified by phenotypic and molecular techniques as Bacillus subtilis strains M14 and M12. Spores resulted to be more hydrophobic than vegetative cells.
The M14 strain showed biosurfactant and emulsifying properties. Inhibition assays against pathogenic bacteria indicated they inhibit gram-positive microorganisms. The antibiotic susceptibility showed that the two strains were sensitive to the antibiotics assayed, except Bacillus M12 that was resistant to Kanamycin.
Conclusion: The results indicate these strains can be further studied for their inclusion in the design of a probiotic product for newborn calves.Fil: Maldonado, Natalia Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Silva de Ruíz, Clara. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia; ArgentinaFil: Nader, Maria Elena Fatima. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentin
Stretching Micro Metal Particles into Uniformly Dispersed and Sized Nanoparticles in Polymer.
There is a longstanding challenge to disperse metal nanoparticles uniformly in bulk polymers for widespread applications. Conventional scale-down techniques often are only able to shrink larger elements (such as microparticles and microfibers) into micro/nano-elements (i.e. nanoparticles and nanofibers) without much altering their relative spatial and size distributions. Here we show an unusual phenomenon that tin (Sn) microparticles with both poor size distribution and spatial dispersion were stretched into uniformly dispersed and sized Sn nanoparticles in polyethersulfone (PES) through a stack and draw technique in thermal drawing. It is believed that the capillary instability plays a crucial role during thermal drawing. This novel, inexpensive, and scalable method overcomes the longstanding challenge to produce bulk polymer-metal nanocomposites (PMNCs) with a uniform dispersion of metallic nano-elements
Oil Spill Detection Analyzing “Sentinel 2“ Satellite Images: A Persian Gulf Case Study
Oil spills near exploitation areas and oil loading ports are often related to the ambitions of governments to get more oil market share and the negligence at the time of the loading in large tankers or ships. The present study investigates one oil spill event using multi sensor satellite images in the Al Khafji (between Kuwait and Saudi Arabia) zone. Oil slicks have been characterized with multi sensor satellite images over the Persian Gulf and then analyzed in order to detect and classify oil spills in this zone. In particular this paper discusses oil pollution detection in the Persian Gulf by using multi sensor satellite images data. Oil spill images have been selected by using Sentinel 2 images pinpointing oil spill zones.
ENVI software for analysing satellite images and ADIOS (Automated Data Inquiry for Oil Spills) for oil weathering modelling have been used.
The obtained results in Al Khafji zone show that the oil spill moves towards the coastline firstly increasing its surface and then
decreasing it until reaching the coastline
Stability of bicontinuous cubic phases in ternary amphiphilic systems with spontaneous curvature
We study the phase behavior of ternary amphiphilic systems in the framework
of a curvature model with non-vanishing spontaneous curvature. The amphiphilic
monolayers can arrange in different ways to form micellar, hexagonal, lamellar
and various bicontinuous cubic phases. For the latter case we consider both
single structures (one monolayer) and double structures (two monolayers). Their
interfaces are modeled by the triply periodic surfaces of constant mean
curvature of the families G, D, P, C(P), I-WP and F-RD. The stability of the
different bicontinuous cubic phases can be explained by the way in which their
universal geometrical properties conspire with the concentration constraints.
For vanishing saddle-splay modulus , almost every phase considered
has some region of stability in the Gibbs triangle. Although bicontinuous cubic
phases are suppressed by sufficiently negative values of the saddle-splay
modulus , we find that they can exist for considerably lower
values than obtained previously. The most stable bicontinuous cubic phases with
decreasing are the single and double gyroid structures since
they combine favorable topological properties with extreme volume fractions.Comment: Revtex, 23 pages with 10 Postscript files included, to appear in J.
Chem. Phys. 112 (6) (February 2000
- …
