4 research outputs found

    Disaggregated Memory Architectures for Blade Servers.

    Full text link
    Current trends in memory capacity and power of servers indicate the need for memory system redesign. Memory capacity is projected to grow at a smaller rate relative to the growth in compute capacity, leading to a potential memory capacity wall in future systems. Furthermore, per-server memory demands are increasing due to large-memory applications, virtual machine consolidation, and bigger operating system footprints. The large amount of memory required is leading to memory power being a substantial and growing portion of server power budgets. As these capacity and power trends continue, a new memory architecture is needed that provides increased capacity and maximizes resource efficiency. This thesis presents the design of a disaggregated memory architecture for blade servers that provides expanded memory capacity and dynamic capacity sharing across multiple servers. Unlike traditional architectures that co-locate compute and memory resources, the proposed design disaggregates a portion of the servers’ memory, which is then assembled in separate memory blades optimized for both capacity and power usage. The servers access memory blades through a redesigned memory hierarchy that is extended to include a remote level that augments local memory. Through the shared interconnect of blade enclosures, multiple compute blades can connect to a single memory blade and dynamically share its capacity. This sharing increases resource efficiency by taking advantage of the differing memory utilization patterns of the compute blades. This thesis evaluates two system architectures that provide operating system-transparent access to the memory blade; one uses virtualization and a commodity-based interconnect, and the other uses minor hardware additions and a high-speed interconnect. The ability to extend and share memory can achieve orders of magnitude performance improvements in cases where applications run out of memory capacity, and similar improvements in performance-per-dollar in cases where systems are overprovisioned for peak memory usage. To complement the evaluation, a hypervisor-based prototype of one system architecture is developed. Finally, by extending the principles of disaggregation to both compute and memory resources, new server architectures are proposed for large-scale data centers that can double performance-per-dollar when considering total cost of ownership compared to traditional servers.PhDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/76007/1/ktlim_1.pd

    Enabling Hyperscale Web Services

    Full text link
    Modern web services such as social media, online messaging, web search, video streaming, and online banking often support billions of users, requiring data centers that scale to hundreds of thousands of servers, i.e., hyperscale. In fact, the world continues to expect hyperscale computing to drive more futuristic applications such as virtual reality, self-driving cars, conversational AI, and the Internet of Things. This dissertation presents technologies that will enable tomorrow’s web services to meet the world’s expectations. The key challenge in enabling hyperscale web services arises from two important trends. First, over the past few years, there has been a radical shift in hyperscale computing due to an unprecedented growth in data, users, and web service software functionality. Second, modern hardware can no longer support this growth in hyperscale trends due to a decline in hardware performance scaling. To enable this new hyperscale era, hardware architects must become more aware of hyperscale software needs and software researchers can no longer expect unlimited hardware performance scaling. In short, systems researchers can no longer follow the traditional approach of building each layer of the systems stack separately. Instead, they must rethink the synergy between the software and hardware worlds from the ground up. This dissertation establishes such a synergy to enable futuristic hyperscale web services. This dissertation bridges the software and hardware worlds, demonstrating the importance of that bridge in realizing efficient hyperscale web services via solutions that span the systems stack. The specific goal is to design software that is aware of new hardware constraints and architect hardware that efficiently supports new hyperscale software requirements. This dissertation spans two broad thrusts: (1) a software and (2) a hardware thrust to analyze the complex hyperscale design space and use insights from these analyses to design efficient cross-stack solutions for hyperscale computation. In the software thrust, this dissertation contributes uSuite, the first open-source benchmark suite of web services built with a new hyperscale software paradigm, that is used in academia and industry to study hyperscale behaviors. Next, this dissertation uses uSuite to study software threading implications in light of today’s hardware reality, identifying new insights in the age-old research area of software threading. Driven by these insights, this dissertation demonstrates how threading models must be redesigned at hyperscale by presenting an automated approach and tool, uTune, that makes intelligent run-time threading decisions. In the hardware thrust, this dissertation architects both commodity and custom hardware to efficiently support hyperscale software requirements. First, this dissertation characterizes commodity hardware’s shortcomings, revealing insights that influenced commercial CPU designs. Based on these insights, this dissertation presents an approach and tool, SoftSKU, that enables cheap commodity hardware to efficiently support new hyperscale software paradigms, improving the efficiency of real-world web services that serve billions of users, saving millions of dollars, and meaningfully reducing the global carbon footprint. This dissertation also presents a hardware-software co-design, uNotify, that redesigns commodity hardware with minimal modifications by using existing hardware mechanisms more intelligently to overcome new hyperscale overheads. Next, this dissertation characterizes how custom hardware must be designed at hyperscale, resulting in industry-academia benchmarking efforts, commercial hardware changes, and improved software development. Based on this characterization’s insights, this dissertation presents Accelerometer, an analytical model that estimates gains from hardware customization. Multiple hyperscale enterprises and hardware vendors use Accelerometer to make well-informed hardware decisions.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169802/1/akshitha_1.pd
    corecore