5,503 research outputs found

    A Stochastic Hybrid Framework for Driver Behavior Modeling Based on Hierarchical Dirichlet Process

    Full text link
    Scalability is one of the major issues for real-world Vehicle-to-Vehicle network realization. To tackle this challenge, a stochastic hybrid modeling framework based on a non-parametric Bayesian inference method, i.e., hierarchical Dirichlet process (HDP), is investigated in this paper. This framework is able to jointly model driver/vehicle behavior through forecasting the vehicle dynamical time-series. This modeling framework could be merged with the notion of model-based information networking, which is recently proposed in the vehicular literature, to overcome the scalability challenges in dense vehicular networks via broadcasting the behavioral models instead of raw information dissemination. This modeling approach has been applied on several scenarios from the realistic Safety Pilot Model Deployment (SPMD) driving data set and the results show a higher performance of this model in comparison with the zero-hold method as the baseline.Comment: This is the accepted version of the paper in 2018 IEEE 88th Vehicular Technology Conference (VTC2018-Fall) (references added, title and abstract modified

    Implementation and Evaluation of a Cooperative Vehicle-to-Pedestrian Safety Application

    Full text link
    While the development of Vehicle-to-Vehicle (V2V) safety applications based on Dedicated Short-Range Communications (DSRC) has been extensively undergoing standardization for more than a decade, such applications are extremely missing for Vulnerable Road Users (VRUs). Nonexistence of collaborative systems between VRUs and vehicles was the main reason for this lack of attention. Recent developments in Wi-Fi Direct and DSRC-enabled smartphones are changing this perspective. Leveraging the existing V2V platforms, we propose a new framework using a DSRC-enabled smartphone to extend safety benefits to VRUs. The interoperability of applications between vehicles and portable DSRC enabled devices is achieved through the SAE J2735 Personal Safety Message (PSM). However, considering the fact that VRU movement dynamics, response times, and crash scenarios are fundamentally different from vehicles, a specific framework should be designed for VRU safety applications to study their performance. In this article, we first propose an end-to-end Vehicle-to-Pedestrian (V2P) framework to provide situational awareness and hazard detection based on the most common and injury-prone crash scenarios. The details of our VRU safety module, including target classification and collision detection algorithms, are explained next. Furthermore, we propose and evaluate a mitigating solution for congestion and power consumption issues in such systems. Finally, the whole system is implemented and analyzed for realistic crash scenarios

    Providing over-the-horizon awareness to driver support systems

    Get PDF
    Vehicle-to-vehicle communications is a promising technique for driver support systems to increase traffic safety and efficiency. A proposed system is the Congestion Assistant [1], which aims at supporting drivers when approaching and driving in a traffic jam. Studies have shown great potential for the Congestion Assistant to reduce the impact of congestion, even at low penetration. However, these studies assumed complete and instantaneous availability of information regarding position and velocity of vehicles ahead. In this paper, we introduce a system where vehicles collaboratively build a so-called TrafficMap, providing over-the-horizon awareness. The idea is that this TrafficMap provides highly compressed information that is both essential and sufficient for the Congestion Assistant to operate. Moreover, this TrafficMap can be built in a distributed way, where only a limited subset of the vehicles have to alter it and/or forward it in the upstream direction. Initial simulation experiments show that our proposed system provides vehicles with a highly compressed view of the traffic ahead with only limited communication

    Exploiting Map Topology Knowledge for Context-predictive Multi-interface Car-to-cloud Communication

    Full text link
    While the automotive industry is currently facing a contest among different communication technologies and paradigms about predominance in the connected vehicles sector, the diversity of the various application requirements makes it unlikely that a single technology will be able to fulfill all given demands. Instead, the joint usage of multiple communication technologies seems to be a promising candidate that allows benefiting from characteristical strengths (e.g., using low latency direct communication for safety-related messaging). Consequently, dynamic network interface selection has become a field of scientific interest. In this paper, we present a cross-layer approach for context-aware transmission of vehicular sensor data that exploits mobility control knowledge for scheduling the transmission time with respect to the anticipated channel conditions for the corresponding communication technology. The proposed multi-interface transmission scheme is evaluated in a comprehensive simulation study, where it is able to achieve significant improvements in data rate and reliability

    A Learning-Based Framework for Two-Dimensional Vehicle Maneuver Prediction over V2V Networks

    Full text link
    Situational awareness in vehicular networks could be substantially improved utilizing reliable trajectory prediction methods. More precise situational awareness, in turn, results in notably better performance of critical safety applications, such as Forward Collision Warning (FCW), as well as comfort applications like Cooperative Adaptive Cruise Control (CACC). Therefore, vehicle trajectory prediction problem needs to be deeply investigated in order to come up with an end to end framework with enough precision required by the safety applications' controllers. This problem has been tackled in the literature using different methods. However, machine learning, which is a promising and emerging field with remarkable potential for time series prediction, has not been explored enough for this purpose. In this paper, a two-layer neural network-based system is developed which predicts the future values of vehicle parameters, such as velocity, acceleration, and yaw rate, in the first layer and then predicts the two-dimensional, i.e. longitudinal and lateral, trajectory points based on the first layer's outputs. The performance of the proposed framework has been evaluated in realistic cut-in scenarios from Safety Pilot Model Deployment (SPMD) dataset and the results show a noticeable improvement in the prediction accuracy in comparison with the kinematics model which is the dominant employed model by the automotive industry. Both ideal and nonideal communication circumstances have been investigated for our system evaluation. For non-ideal case, an estimation step is included in the framework before the parameter prediction block to handle the drawbacks of packet drops or sensor failures and reconstruct the time series of vehicle parameters at a desirable frequency

    Operating ITS-G5 DSRC over Unlicensed Bands: A City-Scale Performance Evaluation

    Get PDF
    Future Connected and Autonomous Vehicles (CAVs) will be equipped with a large set of sensors. The large amount of generated sensor data is expected to be exchanged with other CAVs and the road-side infrastructure. Both in Europe and the US, Dedicated Short Range Communications (DSRC) systems, based on the IEEE 802.11p Physical Layer, are key enabler for the communication among vehicles. Given the expected market penetration of connected vehicles, the licensed band of 75 MHz, dedicated to DSRC communications, is expected to become increasingly congested. In this paper, we investigate the performance of a vehicular communication system, operated over the unlicensed bands 2.4 GHz - 2.5 GHz and 5.725 GHz - 5.875 GHz. Our experimental evaluation was carried out in a testing track in the centre of Bristol, UK and our system is a full-stack ETSI ITS-G5 implementation. Our performance investigation compares key communication metrics (e.g., packet delivery rate, received signal strength indicator) measured by operating our system over the licensed DSRC and the considered unlicensed bands. In particular, when operated over the 2.4 GHz - 2.5 GHz band, our system achieves comparable performance to the case when the DSRC band is used. On the other hand, as soon as the system, is operated over the 5.725 GHz - 5.875 GHz band, the packet delivery rate is 30% smaller compared to the case when the DSRC band is employed. These findings prove that operating our system over unlicensed ISM bands is a viable option. During our experimental evaluation, we recorded all the generated network interactions and the complete data set has been publicly available.Comment: IEEE PIMRC 2019, to appea

    VANET Applications: Hot Use Cases

    Get PDF
    Current challenges of car manufacturers are to make roads safe, to achieve free flowing traffic with few congestions, and to reduce pollution by an effective fuel use. To reach these goals, many improvements are performed in-car, but more and more approaches rely on connected cars with communication capabilities between cars, with an infrastructure, or with IoT devices. Monitoring and coordinating vehicles allow then to compute intelligent ways of transportation. Connected cars have introduced a new way of thinking cars - not only as a mean for a driver to go from A to B, but as smart cars - a user extension like the smartphone today. In this report, we introduce concepts and specific vocabulary in order to classify current innovations or ideas on the emerging topic of smart car. We present a graphical categorization showing this evolution in function of the societal evolution. Different perspectives are adopted: a vehicle-centric view, a vehicle-network view, and a user-centric view; described by simple and complex use-cases and illustrated by a list of emerging and current projects from the academic and industrial worlds. We identified an empty space in innovation between the user and his car: paradoxically even if they are both in interaction, they are separated through different application uses. Future challenge is to interlace social concerns of the user within an intelligent and efficient driving
    corecore