4,151 research outputs found

    Agent-based models of social behaviour and communication in evacuations:A systematic review

    Get PDF
    Most modern agent-based evacuation models involve interactions between evacuees. However, the assumed reasons for interactions and portrayal of them may be overly simple. Research from social psychology suggests that people interact and communicate with one another when evacuating and evacuee response is impacted by the way information is communicated. Thus, we conducted a systematic review of agent-based evacuation models to identify 1) how social interactions and communication approaches between agents are simulated, and 2) what key variables related to evacuation are addressed in these models. We searched Web of Science and ScienceDirect to identify articles that simulated information exchange between agents during evacuations, and social behaviour during evacuations. From the final 70 included articles, we categorised eight types of social interaction that increased in social complexity from collision avoidance to social influence based on strength of social connections with other agents. In the 17 models which simulated communication, we categorised four ways that agents communicate information: spatially through information trails or radii around agents, via social networks and via external communication. Finally, the variables either manipulated or measured in the models were categorised into the following groups: environmental condition, personal attributes of the agents, procedure, and source of information. We discuss promising directions for agent-based evacuation models to capture the effects of communication and group dynamics on evacuee behaviour. Moreover, we demonstrate how communication and group dynamics may impact the variables commonly used in agent-based evacuation models

    Analysis of crowd behavior through pattern virtualization

    Get PDF
    The study of the concentration of individuals in public places such as squares, shopping malls, parks, gardens, etc., is an open study field in the different disciplines of science, that leads to the need of having systems that allow to forecast and to predict eventualities in uncontrolled situations, as it is the case of an earthquake. From that assumption, artificial intelligence, as a branch of computational sciences, studies the human behavior in a virtual way in order to obtain simulations based on social, psychological, neuro-scientific areas, among others, with the purpose of linking these theories to the area of artificial intelligence. This paper presents a way to generate virtual multitudes with heterogeneous behaviors, in such a way that the individuals that form the multitude present different behaviors

    Agent-based models of social behaviour and communication in evacuations: A systematic review

    Full text link
    Most modern agent-based evacuation models involve interactions between evacuees. However, the assumed reasons for interactions and portrayal of them may be overly simple. Research from social psychology suggests that people interact and communicate with one another when evacuating and evacuee response is impacted by the way information is communicated. Thus, we conducted a systematic review of agent-based evacuation models to identify 1) how social interactions and communication approaches between agents are simulated, and 2) what key variables related to evacuation are addressed in these models. We searched Web of Science and ScienceDirect to identify articles that simulated information exchange between agents during evacuations, and social behaviour during evacuations. From the final 70 included articles, we categorised eight types of social interaction that increased in social complexity from collision avoidance to social influence based on strength of social connections with other agents. In the 17 models which simulated communication, we categorised four ways that agents communicate information: spatially through information trails or radii around agents, via social networks and via external communication. Finally, the variables either manipulated or measured in the models were categorised into the following groups: environmental condition, personal attributes of the agents, procedure, and source of information. We discuss promising directions for agent-based evacuation models to capture the effects of communication and group dynamics on evacuee behaviour. Moreover, we demonstrate how communication and group dynamics may impact the variables commonly used in agent-based evacuation models.Comment: Pre-print submitted to Safety Science special issue following the 2023 Pedestrian and Evacuation Dynamics conferenc

    How the OCEAN Personality Model Affects the Perception of Crowds

    Get PDF
    Cataloged from PDF version of article.A personality model named High-Density Autonomous Crowds (HiDAC) simulation system provides individual differences by assigning each person different psychological and physiological traits. Users normally set these parameters to model a crowd's nonuniformity and diversity. The approach creates plausible variations in the crowd and enables novice users to dictate these variations by combining a standard personality model with a high-density crowd simulation. HiDAC addresses the simulation of local behaviors and the global wayfinding of crowds in a dynamically changing environment. It directs autonomous agents' behavior by combining geometric and psychological rules. HiDAC handles collisions through avoidance and response forces. Over long distances, the system applies collision avoidance so that agents can steer around obstacles. HiDAC assigns people specific behaviors. The number of actions they complete depends on their curiosity

    Panic That Spreads Sociobehavioral Contagion in Pedestrian Evacuations

    Get PDF
    Crowds are a part of everyday public life, from stadiums and arenas to school hallways. Occasionally, pushing within the crowd spontaneously escalates to crushing behavior, resulting in injuries and even death. The rarity and unpredictability of these incidents provides few options to collect data for research on the prediction and prevention of hazardous emergent behaviors in crowds. This study takes a close look at the way states of agitation, such as panic, can spread through crowds. Group composition—mainly family groups composed of members with differing mobility levels—plays an important role in the spread of agitation through the crowd, ultimately affecting the exit density and evacuation clearance time of a simulated venue. This study used an agent-based model of pedestrian movement during the egress of a hypothetical room and adopted an emotional, cognitive, and social framework to explore the transference and dissipation of agitation through a crowd. The preliminary results reveal that average group size in a crowd is a primary contributor to the exit density and evacuation clearance time. The study provides the groundwork on which to build more elaborate models that incorporate sociobehavioral aspects to simulate human movement during panic situations and account for the potential for dangerous behavior to emerge in crowds

    Simulating crowd evacuation with socio-cultural, cognitive, and emotional elements

    Get PDF
    In this research, the effects of culture, cognitions, and emotions on crisis management and prevention are analysed. An agent-based crowd evacuation simulation model was created, named IMPACT, to study the evacuation process from a transport hub. To extend previous research, various socio-cultural, cognitive, and emotional factors were modelled, including: language, gender, familiarity with the environment, emotional contagion, prosocial behaviour, falls, group decision making, and compliance. The IMPACT model was validated against data from an evacuation drill using the existing EXODUS evacuation model. Results show that on all measures, the IMPACT model is within or close to the prescribed boundaries, thereby establishing its validity. Structured simulations with the validated model revealed important findings, including: the effect of doors as bottlenecks, social contagion speeding up evacuation time, falling behaviour not affecting evacuation time significantly, and travelling in groups being more beneficial for evacuation time than travelling alone. This research has important practical applications for crowd management professionals, including transport hub operators, first responders, and risk assessors

    Integration of agent-based modelling of social-spatial processes in architectural parametric design

    Get PDF
    A representation framework for modelling the social-spatial processes of inhabitation is proposed to extend the scope of parametric architectural design process. We introduce an agent-based modelling framework with a computational model of social-spatial dynamics at its core. Architectural parametric design is performed as a process of modelling the temporal characteristics of spatial changes required for members of a social group to reach social spatial comfort. We have developed a prototype agent-based modelling system using the Rhino-Grasshopper platform. The system employs a human behaviour model adapted from the PECS (Physical, Emotional, Cognitive, Social) reference model first proposed by Schmidt and Urban. The agent-based model and its application was evaluated by comparative modelling of two real Vietnamese dwellings: a traditional vernacular house in Hue and a contemporary house in Ho Chi Minh City. The evaluation shows that the system returns differentiated temporal characteristics of spatial modifications of the two dwellings as expected

    Multi-scale Models for Transportation Systems Under Emergency Conditions

    Get PDF
    The purpose of this study is to investigate human behavior in emergencies. More specifically, agent-based simulation and social force models were developed to examine the impact of various human and environmental factors on the efficiency of the evacuation process, through a series of case studies. The independent variables of the case studies include the number of exits, the number of passengers, the evacuation policies, and instructions, as well as the queue configuration and wall separators. The results revealed the location of the exits, number of exits, evacuation strategies, and group behaviors all significantly impact the total time of the evacuation. For the queue configuration, short aisles lower infection spread when rope separators were used. The findings provide new insights in designing layout, planning, practice, and training strategies for improving the effectiveness of the pedestrian evacuation process under emergency
    corecore