41 research outputs found

    User-interactive wirelessly-communicating “smart” textiles made from multimaterial fibers

    Get PDF
    En raison de la nature intime des interactions homme-textiles (essentiellement, nous sommes entourĂ©s par les textiles 24/7 - soit sous la forme de vĂȘtements que nous portons ou comme rembourrage dans nos voitures, maisons, bureaux, etc.), les textiles intelligents sont devenus des plates-formes de plus en plus attrayantes pour les rĂ©seaux de capteurs innovants biomĂ©dicaux, transducteurs, et des microprocesseurs dĂ©diĂ©s Ă  la surveillance continue de la santĂ©. En mĂȘme temps, l'approche commune dans le domaine des textiles intelligents consiste en l'adaptation de la microĂ©lectronique planaire classique Ă  une sorte de substrat souple. Cela se traduit souvent par de mauvaises propriĂ©tĂ©s mĂ©caniques et donc des compromis au niveau du confort et de l'acceptation des usagers, qui Ă  leur tour peuvent probablement expliquer pourquoi ces solutions Ă©mergent rarement du laboratoire et, Ă  l'exception de certains cas trĂšs spĂ©cifiques, ne soit pas utilisĂ©s dans la vie de tous les jours. Par ailleurs, nous assistons prĂ©sentement Ă  un changement de paradigme au niveau de l'informatique autonome classique vers le concept de calculs distribuĂ©s (ou informatique en nuage). Dans ce cas, la puissance de calcul du nƓud individuel ou d'un dispositif de textile intelligent est moins importante que la capacitĂ© de transmettre des donnĂ©es Ă  l'Internet. Dans ce travail, je propose une nouvelle approche basĂ©e sur l'intĂ©gration de polymĂšre, verre et mĂ©tal dans des structures de fibres miniaturisĂ©es afin de rĂ©aliser des dispositifs de textiles intelligents de prochaine gĂ©nĂ©ration avec des fonctionnalitĂ©s de niveau supĂ©rieur (comme la communication sans fil, la reconnaissance tactile, les interconnexions Ă©lectriques) tout en ayant une forme minimalement envahissante. Tout d'abord, j'Ă©tudie diffĂ©rents modĂšles d'antennes compatibles avec la gĂ©omĂ©trie des fibres et des techniques de fabrication. Ensuite, je dĂ©montre expĂ©rimentalement que ces antennes en fibres multi-matĂ©riaux peuvent ĂȘtre intĂ©grĂ©es dans les textiles lors d’un processus standard de fabrication de textiles. Les tests effectuĂ©s sur ces textiles ont montrĂ© que, pour les scĂ©narios «sur-corps et hors-corps», les propriĂ©tĂ©s Ă©missives en termes de perte de retour (S11), le patron (diagramme) de radiation, l'efficacitĂ© (gain), et le taux d'erreur binaire (TEB) sont directement comparables Ă  des solutions classiques rigides. Ces antennes sont adĂ©quates pour les communications Ă  courte portĂ©e des applications de communications sans fil ayant un dĂ©bit de donnĂ©es de Mo/s (mĂ©ga-octets par seconde) (via protocoles Bluetooth et IEEE 802.15.4 Ă  la frĂ©quence de 2,4 GHz). Des simulations numĂ©riques de taux d'absorption spĂ©cifique dĂ©montrent Ă©galement le plein respect des rĂšgles de sĂ©curitĂ© imposĂ©es par Industrie Canada pour les rĂ©seaux sans fil Ă  proximitĂ© du corps humain. Puisque les matĂ©riaux composites de fibres mĂ©tal-verre-polymĂšre sont fabriquĂ©s en utilisant des fibres de silice creuses de diamĂštre submillimĂ©trique et la technique de dĂ©pĂŽt d'argent Ă  l'Ă©tat liquide, les Ă©lĂ©ments conducteurs sont protĂ©gĂ©s de l'environnement et ceci prĂ©serve aussi les propriĂ©tĂ©s mĂ©caniques et esthĂ©tiques des vĂȘtements. Cet aspect est confirmĂ© par des essais correspondant aux normes de l'industrie du textile, l'Ă©tirement standard et des essais de flexion. De plus, appliquer des revĂȘtements superhydrophobes (WCA = 152Âș, SA = 6Âș) permet une communication sans fil sans interruption de ces textiles sous l'application directe de l'eau, mĂȘme aprĂšs plusieurs cycles de lavage. Enfin, le prototype de textile intelligent fabriquĂ© interagit avec l'utilisateur Ă  travers un dĂ©tecteur tactile et transmet les donnĂ©es tactiles Ă  travers le protocole Bluetooth Ă  un smartphone. Cette dĂ©monstration valide l’approche des fibres multi-matĂ©riaux pour une variĂ©tĂ© d'applications.As we are surrounded by textiles 24/7, either in the form of garments that we wear or as upholstery in our cars, homes, offices, etc., textiles are especially attractive platforms for arrays of innovative biomedical sensors, transducers, and microprocessors dedicated, among other applications, to continuous health monitoring. In the same time, the common approach in the field of smart textiles consists in adaptation of conventional planar microelectronics to some kind of flexible substrate, which often results in poor mechanical properties and thus compromises wearing comfort and complicates garment care, which results in low user acceptance. This explains why such solutions rarely emerge from the lab and, with the exception of some very specific cases, cannot be seen in the everyday life. Furthermore, we are currently witnessing a global shift from classical standalone computing to the concept of distributed computation (e.g. so-called thin clients and cloud storage). In this context, the computation power of the individual node or smart textile device in this case, becomes progressively less important than the ability to relay data to the Internet. In this work, I propose a novel approach based on the idea of integration of polymer, glass and metal into miniaturized fiber structures in order to achieve next-generation smart textile devices with higher-level functionalities, such as wireless communication, touch recognition, electrical interconnects, with minimally-invasive attributes. First, I investigate different possible fiber-shaped antenna designs and fabrication techniques. Next, I experimentally demonstrate that such multi-material fiber antennas can be integrated into textiles during standard textile manufacturing process. Tests conducted on these textiles have shown that, for on-body and off-body scenarios, the emissive properties in terms of return loss (S11), radiation pattern, efficiency (gain), and bit-error rate (BER) are directly comparable to classic ‘rigid’ solutions and adequately address short-range wireless communications applications at Mbps data-rates (via Bluetooth and IEEE 802.15.4 protocols at 2.4 GHz frequency). Numerical simulations of the specific absorption rate (SAR) also demonstrate full compliance with safety regulations imposed by Industry Canada for wireless body area network devices. Since metal-glass-polymer fiber composites were fabricated using sub-millimetre hollow-core silica fibers and liquid state silver deposition technique, the conductor elements are shielded against the environment and preserve the mechanical and cosmetic properties of the garments. This is confirmed by the textile industry standard stretching and bending tests. Additionally, applied superhydrophobic coatings (WCA=152Âș, SA=6Âș) allow uninterrupted wireless communication of the textiles under direct water application even after multiple washing cycles. Finally, I fabricated a user-interactive and wireless-communicating smart textile prototype, that interacts with the user through capacitive touch-sensing and relays the touch data through Bluetooth protocol to a smartphone. This demonstration validates that the proposed approach based on multi-material fibers is suitable for applications to sensor fabrics and bio-sensing textiles connected in real time to mobile communications infrastructures, suitable for a variety of health and life science applications

    Wearable contactless respiration sensor based on multi-material fibers integrated into textile

    Get PDF
    In this paper, we report on a novel sensor for the contactless monitoring of the respiration rate, made from multi-material fibers arranged in the form of spiral antenna (2.45 GHz central frequency). High flexibility of the used composite metal-glass-polymer fibers permits their integration into a cotton t-shirt without compromising comfort or restricting movement of the user. At the same time, change of the antenna geometry, due to the chest expansion and the displacement of the air volume in the lungs, is found to cause a significant shift of the antenna operational frequency, thus allowing respiration detection. In contrast with many current solutions, respiration is detected without attachment of the electrodes of any kind to the user’s body, neither direct contact of the fiber with the skin is required. Respiration patterns for two male volunteers were recorded with the help of a sensor prototype integrated into standard cotton t-shirt in sitting, standing, and lying scenarios. The typical measured frequency shift for the deep and shallow breathing was found to be in the range 120–200 MHz and 10–15 MHz, respectively. The same spiral fiber antenna is also shown to be suitable for short-range wireless communication, thus allowing respiration data transmission, for example, via the Bluetooth protocol, to mobile handheld devices

    Theoretical investigation and numerical simulations of RF textiles antennas performance

    Get PDF
    Ce travail est consacrĂ© Ă  la thĂ©orie et aux simulations numĂ©riques des nouveaux textiles qui peuvent communiquĂ©s sans-fil et composĂ© des antennes fibre multimatĂ©riaux. La recherche est conduite par une tentative Ă  changer le concept de "wearables" de grands dispositifs montĂ©s sur le corps Ă  des dispositifs cachĂ©s confortables intĂ©grĂ©s dans vos vĂȘtements. Les textiles RF peuvent ĂȘtre prĂ©vus dans divers secteur des soins de santĂ©, pour la surveillance des enfants et des personnes ĂągĂ©es, dans les domaines de tĂ©lĂ©mĂ©decine, de sĂ©curitĂ© et de la recherche et sauvetage. Les antennes RF textiles, prĂ©cĂ©demment dĂ©veloppĂ©es dans notre groupe, sont constituĂ©es de fibre multimatĂ©riaux en incorporant une couche conductrice d'argent dans un capillaire silice de 100 ”m de diamĂštre Ă  l'aide de la technique de dĂ©position de phase liquide. La structure de ces antennes portables est flexible, se conforme au corps et non invasif. Dans ce travail, la performance de deux antennes de fibre, l'antenne dipĂŽle et boucle, sont examinĂ©s Ă  la bande de frĂ©quence ISM par des simulations numĂ©riques Ă  l'aide de logiciel ANSYS HFSS dans l'espace libre et sur le corps. À cette fin, le modĂšle de corps humain Ă  plusieurs couches spĂ©cifiques a Ă©tĂ© dĂ©veloppĂ© en s'inspirant des valeurs proposĂ©es par le FCC "Federal Communications Commission" pour assigner les propriĂ©tĂ©s diĂ©lectriques de chaque tissu et pour satisfaire toutes les mesures de sĂ©curitĂ©. Les rĂ©sultats stimulĂ©s comprennent le dĂ©placement de frĂ©quence de rĂ©sonance, les diagrammes de rayonnement affectĂ©s, le champ de rayonnement au-dessus du corps, l'efficacitĂ© et les mesures de SAR. En outre, la sĂ©paration de corps de l'antenne et les effets mĂ©tĂ©orologiques sont Ă©galement examinĂ©s. Les rĂ©sultats prĂ©sentĂ©s sont ensuite analysĂ©s en ce qui concerne les avantages et les inconvĂ©nients des deux designs, particuliĂšrement dans le scĂ©nario sur le corps, tel qu'une attention spĂ©ciale est accordĂ©e Ă  la robustesse et l'immunitĂ© contre la proximitĂ© du corps humain.This work is devoted to the theory and numerical simulations of novel wireless-communicating textiles featuring multi-material RF fiber antennas embedded into textiles. The research is driven by an attempt to change the concept of wearables from large devices mounted on the body to a hidden and comfortable wearables integrated into your clothes. RF textiles antennas are expected to find multiple applications in various sectors of healthcare, child and elderly monitoring - telemedicine and home-nursing, security, search and rescue. RF textiles antennas, previously developed in our group, are made from multi-material fiber by incorporating a conductive layer of silver within a silica capillary of 100ÎŒm diameter using liquid phase deposition technique. The structure of these wearable antennas is flexible, conform to the body, and non-invasive. In this work the performance of two fiber antennas, namely dipole and loop, is investigated at ISM-band through numerical simulations using ANSYS HFSS both in free space and on-body scenario. For this purpose, the specific multi-layer human body model was developed using the “Federal Communication Commission” guidelines to assign the dielectric properties of each tissue and to satisfy all safety regulations. Simulated results include the shifting of resonance frequency, affected radiation patterns, radiation field above the body, efficiency and SAR measurements. In addition, antenna-body-separation distance and weather effects are also investigated. Presented results are then analyzed in terms of pros and cons of the two fiber antenna designs, especially in on-body scenario, as special attention is given to the robustness and immunity against the vicinity of human body

    Innovative Wearable Sensors Based on Hybrid Materials for Real-Time Breath Monitoring

    Get PDF
    This chapter will present the importance of innovative hybrid materials for the development of a new generation of wearable sensors and the high impact on improving patient’s health care. Suitable conductive nanoparticles when embedded into a polymeric or glass host matrix enable the fabrication of flexible sensor capable to perform automatic monitoring of human vital signs. Breath is a key vital sign, and its continuous monitoring is very important including the detection of sleep apnea. Many research groups work to develop wearable devices capable to monitor continuously breathing activity in different conditions. The tendency of integrating wearable sensors into garment is becoming more popular. The main reason is because textile is surrounding us 7 days a week and 24 h a day, and it is easy to use by the wearer without interrupting their daily activities. Technologies based on contact/noncontact and textile sensors for breath detection are addressed in this chapter. New technology based on multi-material fiber antenna opens the door to future methods of noninvasive and flexible sensor network for real-time breath monitoring. This technology will be presented in all its aspects

    Emerging and Disruptive Next-Generation Technologies for POC: Sensors, Chemistry and Microfluidics for Diagnostics

    Get PDF
    Recently, the attention paid to self-care tests and the easy and large screening of a high number of people has dramatically increased. Indeed, easy and affordable tools for the safe management of biological fluids together with self-diagnosis have emerged as compulsory requirements in this time of the COVID-19 pandemic, to lighten the pressure on public healthcare institutions and thus limiting the diffusion of infections. Obviously, other kinds of pathologies (cancer or other degenerative diseases) also continue to require attention, with progressively earlier and more widespread diagnoses. The contribution to the development of this research field comes from the areas of innovative plastic and 3D microfluidics, smart chemistry and the integration of miniaturized sensors, going in the direction of improving the performances of in vitro diagnostic (IVD) devices. In our Special Issue, we include papers describing easy strategies to identify diseases at the point-of-care and near-the-bed levels, but also dealing with innovative biomarkers, sample treatments, and chemistry processes which, in perspective, represent promising tools to be applied in the field

    The 2021 flexible and printed electronics roadmap

    Get PDF
    This roadmap includes the perspectives and visions of leading researchers in the key areas of flexible and printable electronics. The covered topics are broadly organized by the device technologies (sections 1–9), fabrication techniques (sections 10–12), and design and modeling approaches (sections 13 and 14) essential to the future development of new applications leveraging flexible electronics (FE). The interdisciplinary nature of this field involves everything from fundamental scientific discoveries to engineering challenges; from design and synthesis of new materials via novel device design to modelling and digital manufacturing of integrated systems. As such, this roadmap aims to serve as a resource on the current status and future challenges in the areas covered by the roadmap and to highlight the breadth and wide-ranging opportunities made available by FE technologies

    LOW-RESOLUTION CUSTOMIZABLE UBIQUITOUS DISPLAYS

    Get PDF
    In a conventional display, pixels are constrained within the rectangular or circular boundaries of the device. This thesis explores moving pixels from a screen into the surrounding environment to form ubiquitous displays. The surrounding environment can include a human, walls, ceiling, and floor. To achieve this goal, we explore the idea of customizable displays: displays that can be customized in terms of shapes, sizes, resolutions, and locations to fit into the existing infrastructure. These displays require pixels that can easily combine to create different display layouts and provide installation flexibility. To build highly customizable displays, we need to design pixels with a higher level of independence in its operation. This thesis shows different display designs that use pixels with pixel independence ranging from low to high. Firstly, we explore integrating pixels into clothing using battery-powered tethered LEDs to shine information through pockets. Secondly, to enable integrating pixels into the architectural surroundings, we explore using battery-powered untethered pixels that allow building displays of different shapes and sizes on a desired surface. The display can show images and animations on the custom display configuration. Thirdly, we explore the design of a solar-powered independent pixel that can integrate into walls or construction materials to form a display. These pixels overcome the need to recharge them explicitly. Lastly, we explore the design of a mechanical pixel element that can be embedded into construction material to form display panels. The information on these displays is updated manually when a user brushes over the pixels. Our work takes a step forward in designing pixels with higher operation independence to envision a future of displays anywhere and everywhere

    Smart Textiles for Tactile Sensing and Energy Storage

    Get PDF
    Durant ma maĂźtrise, j’ai surtout travaillĂ© sur 2 sujets dans le domaine des textiles intelligents Ă©lectroactifs. Mon premier projet portait sur la fabrication d’un pad textile sensible au toucher utilisant des fibres capacitives en polymĂšres. Les fibres capacitives, prĂ©sentent une grande capacitĂ© et rĂ©sistance, ont Ă©tĂ© fabriquĂ©es utilisant des techniques de fibrage. Pour permettre une connectivitĂ© facile, un mince fil de cuivre a Ă©tĂ© intĂ©grĂ© dans le coeur de la fibre durant l’extrusion. Ces fibres (soft-capacitor) ont des une capacitĂ© par unitĂ© de longueur typiques de 69 nF/m, et des rĂ©sistances de 5 kΩ‹m. Nos mesures et nos modĂšles thĂ©oriques montrent que la capacitĂ© est un paramĂštre trĂšs stable dĂ©terminĂ© par la gĂ©omĂ©trie utilisĂ©e, qui ne dĂ©pend pas du diamĂštre de la fibre ni de ses paramĂštres de fabriquation. La resistivitĂ© de la fibre, quant Ă  elle, a un important coefficient thermique (positif), est trĂšs sensible aux contraintes de tension et dĂ©pend grandement des paramĂštre d’extrusion. Il a aussi Ă©tĂ© dĂ©montrĂ© qu’une fibre capacitive individuelle peut servir de capteur de glissement qui permet de dĂ©terminer, sur sa longueur, la position du contact tactile en mesurant la rĂ©ponse AC de la fibre Ă  un point donnĂ© sur sa surface. La rĂ©ponse Ă©lectrique d’un senseur de ce type est dĂ©crite par le modĂšle de rĂ©seau RC, qui est en accord avec les rĂ©sultats expĂ©rimentaux. Les fibres capacitives dĂ©veloppĂ©es sont souples, de faible diamĂštre, lĂ©gĂšres et n’utilisent pas d’électrolyte liquide, donc elles sont idĂ©ales pour l’intĂ©gration dans les produits textiles. À la fin du chapitre, nous avons dĂ©montrĂ© qu’en tissant un ensemble de fibres capacitives en 1 dimension (fibres parallĂšles), il est possible de tisser un senseur tactile en 2 dimensions. Les performances de ce senseur ont Ă©tĂ© caractĂ©risĂ©es et une bonne isolation entre les canaux a Ă©tĂ© dĂ©montrĂ©e. Un tel senseur possĂšde aussi des fonctionnalitĂ©s multi-touch. Mon deuxiĂšme projet portait sur l’assemblage de cellules Li-ion flexibles et Ă©tirables, leur intĂ©gration dans un textile et leur caractĂ©risation Ă©lectrique dans un contexte de «textiles intelligents». L’aspect chimique de ces cellules a Ă©tĂ© dĂ©veloppĂ© par mon collĂšgue Y.Liu, qui a rĂ©ussi Ă  intĂ©grer la cathode (LiFePO4), l’anode (Li4Ti5o12) et l’électrolyte solide (PEO) dans un systĂšme de cellule Ă©lectrochimique souple. J’ai dĂ©montrĂ© de façon expĂ©rimentale que des batteries de cellules flexibles peuvent ĂȘtre fabriquĂ©s en grande feuilles, puis coupĂ©es en fines ---------- Abstract During my master’s I have mainly worked on two subjects in the research area of electroactive smart textiles. My first project involved building a touch sensitive textile pad using original home-made allpolymer soft capacitor fibers. The capacitor fibers featuring relatively high capacitance and resistance were fabricated using fiber drawing technique. For the ease of connectorization, a thin copper wire was integrated into the fiber core during drawing procedure. Soft-capacitor fibers have a typical capacitance per unit length of 69 nF/m, and a typical resistivity parameter of 5 kΩ‹m. Our measurements and theoretical modeling show that the fiber capacitance is a very stable, geometry defined parameter independent of the fiber diameter, and fiber fabrication parameters. In contrast, fiber resistivity has a very strong positive temperature coefficient, it is highly sensitive to stretching, and it is strongly dependent on the fiber drawing parameters. Next, an individual capacitor fiber was demonstrated to act as a slide sensor that allows determining the touch position along its length by measuring the fiber AC response at a single point at the fiber surface. Electrical response of such a sensor was described by the RC ladder model, with the modelling data in excellent agreement with experimental observations. Developed capacitor fibers are soft, small diameter, lightweight and do not use liquid electrolytes, thus they are ideally suited for the integration into textile products. At the end of the chapter, we have demonstrated that by weaving a one dimensional array of capacitor fibers (in parallel to each other) a fully woven 2D touchpad sensor could be build. Performance of a touchpad sensor was then characterised and the absence of the inter-channel crosstalk was confirmed. We also note that a 2D touchpad has a partial multi-touch functionality. My second project involved assembly of flexible and stretchable Li-ion batteries, their integration into a textile, and their electric characterization in a view of smart textile applications. The chemistry for the battery was developed by my colleague Y. Liu who has combined the relatively conventional Li battery materials including LiFePO4 cathode, Li4Ti5O12 anode and PEO solid electrolyte into a non-conventional soft electrochemical battery system. I have experimentally demonstrated that flexible batteries can be first cast as sheets, and then cut into thin strips, and finally integrated into textile using conventional weaving techniques. Th

    Graphene-based wearable temperature sensors: A review

    Get PDF
    The paper presents a comprehensive review of the use of graphene to develop wearable temperature sensors. The detection of temperature over a wide range has been a growing interest in multidisciplinary sectors in the sensing world. Different kinds of flexible temperature sensors have been fabricated with a range of polymers and nanomaterials. With the additional attribute of wearable nature, these temperature sensors are used ubiquitously to determine the effect of physiochemical variations happening in the environment of the chosen biomedical and industrial applications. Graphene, owing to its exceptional electrical, mechanical, and thermal properties, has been extensively used for the development of wearable temperature sensors. The prototypes have been deployed with certain wireless communication protocols to transfer the experimental data obtained under both controlled environments and real-time scenarios. This paper underlines some of the significant works done on the use of graphene to fabricate and implement wearable temperature sensors, along with the possible remedial steps that can be considered to deal with the challenges existing in the current literature

    Smart Textiles Production

    Get PDF
    The research field of smart textiles is currently witnessing a rapidly growing number of applications integrating intelligent functions in textile substrates. With an increasing amount of new developed product prototypes, the number of materials used and that of specially designed production technologies are also growing. This book is intended to provide an overview of materials, production technologies, and product concepts to different groups concerned with smart textiles. It will help designers to understand the possibilities of smart textile production, so that they are enabled to design this type of products. It will also help textile and electronics manufacturers to understand which production technologies are suitable to meet certain product requirements
    corecore