1,560 research outputs found

    Learning Navigational Visual Representations with Semantic Map Supervision

    Full text link
    Being able to perceive the semantics and the spatial structure of the environment is essential for visual navigation of a household robot. However, most existing works only employ visual backbones pre-trained either with independent images for classification or with self-supervised learning methods to adapt to the indoor navigation domain, neglecting the spatial relationships that are essential to the learning of navigation. Inspired by the behavior that humans naturally build semantically and spatially meaningful cognitive maps in their brains during navigation, in this paper, we propose a novel navigational-specific visual representation learning method by contrasting the agent's egocentric views and semantic maps (Ego2^2-Map). We apply the visual transformer as the backbone encoder and train the model with data collected from the large-scale Habitat-Matterport3D environments. Ego2^2-Map learning transfers the compact and rich information from a map, such as objects, structure and transition, to the agent's egocentric representations for navigation. Experiments show that agents using our learned representations on object-goal navigation outperform recent visual pre-training methods. Moreover, our representations significantly improve vision-and-language navigation in continuous environments for both high-level and low-level action spaces, achieving new state-of-the-art results of 47% SR and 41% SPL on the test server

    ALP: Action-Aware Embodied Learning for Perception

    Full text link
    Current methods in training and benchmarking vision models exhibit an over-reliance on passive, curated datasets. Although models trained on these datasets have shown strong performance in a wide variety of tasks such as classification, detection, and segmentation, they fundamentally are unable to generalize to an ever-evolving world due to constant out-of-distribution shifts of input data. Therefore, instead of training on fixed datasets, can we approach learning in a more human-centric and adaptive manner? In this paper, we introduce \textbf{A}ction-aware Embodied \textbf{L}earning for \textbf{P}erception (ALP), an embodied learning framework that incorporates action information into representation learning through a combination of optimizing policy gradients through reinforcement learning and inverse dynamics prediction objectives. Our method actively explores complex 3D environments to both learn generalizable task-agnostic representations as well as collect downstream training data. We show that ALP outperforms existing baselines in object detection and semantic segmentation. In addition, we show that by training on actively collected data more relevant to the environment and task, our method generalizes more robustly to downstream tasks compared to models pre-trained on fixed datasets such as ImageNet.Comment: preprin

    Perceive, Ground, Reason, and Act: A Benchmark for General-purpose Visual Representation

    Full text link
    Current computer vision models, unlike the human visual system, cannot yet achieve general-purpose visual understanding. Existing efforts to create a general vision model are limited in the scope of assessed tasks and offer no overarching framework to perform them holistically. We present a new comprehensive benchmark, General-purpose Visual Understanding Evaluation (G-VUE), covering the full spectrum of visual cognitive abilities with four functional domains \unicode{x2014} Perceive, Ground, Reason, and Act. The four domains are embodied in 11 carefully curated tasks, from 3D reconstruction to visual reasoning and manipulation. Along with the benchmark, we provide a general encoder-decoder framework to allow for the evaluation of arbitrary visual representation on all 11 tasks. We evaluate various pre-trained visual representations with our framework and observe that (1) Transformer-based visual backbone generally outperforms CNN-based backbone on G-VUE, (2) visual representations from vision-language pre-training are superior to those with vision-only pre-training across visual tasks. With G-VUE, we provide a holistic evaluation standard to motivate research toward building general-purpose visual systems via obtaining more general-purpose visual representations

    LACMA: Language-Aligning Contrastive Learning with Meta-Actions for Embodied Instruction Following

    Full text link
    End-to-end Transformers have demonstrated an impressive success rate for Embodied Instruction Following when the environment has been seen in training. However, they tend to struggle when deployed in an unseen environment. This lack of generalizability is due to the agent's insensitivity to subtle changes in natural language instructions. To mitigate this issue, we propose explicitly aligning the agent's hidden states with the instructions via contrastive learning. Nevertheless, the semantic gap between high-level language instructions and the agent's low-level action space remains an obstacle. Therefore, we further introduce a novel concept of meta-actions to bridge the gap. Meta-actions are ubiquitous action patterns that can be parsed from the original action sequence. These patterns represent higher-level semantics that are intuitively aligned closer to the instructions. When meta-actions are applied as additional training signals, the agent generalizes better to unseen environments. Compared to a strong multi-modal Transformer baseline, we achieve a significant 4.5% absolute gain in success rate in unseen environments of ALFRED Embodied Instruction Following. Additional analysis shows that the contrastive objective and meta-actions are complementary in achieving the best results, and the resulting agent better aligns its states with corresponding instructions, making it more suitable for real-world embodied agents. The code is available at: https://github.com/joeyy5588/LACMA.Comment: EMNLP 202

    Multi-CLIP: Contrastive Vision-Language Pre-training for Question Answering tasks in 3D Scenes

    Full text link
    Training models to apply common-sense linguistic knowledge and visual concepts from 2D images to 3D scene understanding is a promising direction that researchers have only recently started to explore. However, it still remains understudied whether 2D distilled knowledge can provide useful representations for downstream 3D vision-language tasks such as 3D question answering. In this paper, we propose a novel 3D pre-training Vision-Language method, namely Multi-CLIP, that enables a model to learn language-grounded and transferable 3D scene point cloud representations. We leverage the representational power of the CLIP model by maximizing the agreement between the encoded 3D scene features and the corresponding 2D multi-view image and text embeddings in the CLIP space via a contrastive objective. To validate our approach, we consider the challenging downstream tasks of 3D Visual Question Answering (3D-VQA) and 3D Situated Question Answering (3D-SQA). To this end, we develop novel multi-modal transformer-based architectures and we demonstrate how our pre-training method can benefit their performance. Quantitative and qualitative experimental results show that Multi-CLIP outperforms state-of-the-art works across the downstream tasks of 3D-VQA and 3D-SQA and leads to a well-structured 3D scene feature space.Comment: The first two authors contributed equall

    Point-Bind & Point-LLM: Aligning Point Cloud with Multi-modality for 3D Understanding, Generation, and Instruction Following

    Full text link
    We introduce Point-Bind, a 3D multi-modality model aligning point clouds with 2D image, language, audio, and video. Guided by ImageBind, we construct a joint embedding space between 3D and multi-modalities, enabling many promising applications, e.g., any-to-3D generation, 3D embedding arithmetic, and 3D open-world understanding. On top of this, we further present Point-LLM, the first 3D large language model (LLM) following 3D multi-modal instructions. By parameter-efficient fine-tuning techniques, Point-LLM injects the semantics of Point-Bind into pre-trained LLMs, e.g., LLaMA, which requires no 3D instruction data, but exhibits superior 3D and multi-modal question-answering capacity. We hope our work may cast a light on the community for extending 3D point clouds to multi-modality applications. Code is available at https://github.com/ZiyuGuo99/Point-Bind_Point-LLM.Comment: Work in progress. Code is available at https://github.com/ZiyuGuo99/Point-Bind_Point-LL

    EmotionGesture: Audio-Driven Diverse Emotional Co-Speech 3D Gesture Generation

    Full text link
    Generating vivid and diverse 3D co-speech gestures is crucial for various applications in animating virtual avatars. While most existing methods can generate gestures from audio directly, they usually overlook that emotion is one of the key factors of authentic co-speech gesture generation. In this work, we propose EmotionGesture, a novel framework for synthesizing vivid and diverse emotional co-speech 3D gestures from audio. Considering emotion is often entangled with the rhythmic beat in speech audio, we first develop an Emotion-Beat Mining module (EBM) to extract the emotion and audio beat features as well as model their correlation via a transcript-based visual-rhythm alignment. Then, we propose an initial pose based Spatial-Temporal Prompter (STP) to generate future gestures from the given initial poses. STP effectively models the spatial-temporal correlations between the initial poses and the future gestures, thus producing the spatial-temporal coherent pose prompt. Once we obtain pose prompts, emotion, and audio beat features, we will generate 3D co-speech gestures through a transformer architecture. However, considering the poses of existing datasets often contain jittering effects, this would lead to generating unstable gestures. To address this issue, we propose an effective objective function, dubbed Motion-Smooth Loss. Specifically, we model motion offset to compensate for jittering ground-truth by forcing gestures to be smooth. Last, we present an emotion-conditioned VAE to sample emotion features, enabling us to generate diverse emotional results. Extensive experiments demonstrate that our framework outperforms the state-of-the-art, achieving vivid and diverse emotional co-speech 3D gestures.Comment: Under revie

    MIMIC: Masked Image Modeling with Image Correspondences

    Full text link
    Many pixelwise dense prediction tasks-depth estimation and semantic segmentation in computer vision today rely on pretrained image representations. Therefore, curating effective pretraining datasets is vital. Unfortunately, the effective pretraining datasets are those with multi-view scenes and have only been curated using annotated 3D meshes, point clouds, and camera parameters from simulated environments. We propose a dataset-curation mechanism that does not require any annotations. We mine two datasets: MIMIC-1M with 1.3M and MIMIC-3M with 3.1M multi-view image pairs from open-sourced video datasets and from synthetic 3D environments. We train multiple self-supervised models with different masked image modeling objectives to showcase the following findings: Representations trained on MIMIC-3M outperform those mined using annotations on multiple downstream tasks, including depth estimation, semantic segmentation, surface normals, and pose estimation. They also outperform representations that are frozen and when downstream training data is limited to few-shot. Larger dataset (MIMIC-3M) significantly improves performance, which is promising since our curation method can arbitrarily scale to produce even larger datasets. MIMIC code, dataset, and pretrained models are open-sourced at https://github.com/RAIVNLab/MIMIC

    PonderV2: Pave the Way for 3D Foundation Model with A Universal Pre-training Paradigm

    Full text link
    In contrast to numerous NLP and 2D computer vision foundational models, the learning of a robust and highly generalized 3D foundational model poses considerably greater challenges. This is primarily due to the inherent data variability and the diversity of downstream tasks. In this paper, we introduce a comprehensive 3D pre-training framework designed to facilitate the acquisition of efficient 3D representations, thereby establishing a pathway to 3D foundational models. Motivated by the fact that informative 3D features should be able to encode rich geometry and appearance cues that can be utilized to render realistic images, we propose a novel universal paradigm to learn point cloud representations by differentiable neural rendering, serving as a bridge between 3D and 2D worlds. We train a point cloud encoder within a devised volumetric neural renderer by comparing the rendered images with the real images. Notably, our approach demonstrates the seamless integration of the learned 3D encoder into diverse downstream tasks. These tasks encompass not only high-level challenges such as 3D detection and segmentation but also low-level objectives like 3D reconstruction and image synthesis, spanning both indoor and outdoor scenarios. Besides, we also illustrate the capability of pre-training a 2D backbone using the proposed universal methodology, surpassing conventional pre-training methods by a large margin. For the first time, PonderV2 achieves state-of-the-art performance on 11 indoor and outdoor benchmarks. The consistent improvements in various settings imply the effectiveness of the proposed method. Code and models will be made available at https://github.com/OpenGVLab/PonderV2.Comment: arXiv admin note: text overlap with arXiv:2301.0015
    corecore