8,796 research outputs found

    End-to-end Learning for Short Text Expansion

    Full text link
    Effectively making sense of short texts is a critical task for many real world applications such as search engines, social media services, and recommender systems. The task is particularly challenging as a short text contains very sparse information, often too sparse for a machine learning algorithm to pick up useful signals. A common practice for analyzing short text is to first expand it with external information, which is usually harvested from a large collection of longer texts. In literature, short text expansion has been done with all kinds of heuristics. We propose an end-to-end solution that automatically learns how to expand short text to optimize a given learning task. A novel deep memory network is proposed to automatically find relevant information from a collection of longer documents and reformulate the short text through a gating mechanism. Using short text classification as a demonstrating task, we show that the deep memory network significantly outperforms classical text expansion methods with comprehensive experiments on real world data sets.Comment: KDD'201

    Learning Character-level Compositionality with Visual Features

    Full text link
    Previous work has modeled the compositionality of words by creating character-level models of meaning, reducing problems of sparsity for rare words. However, in many writing systems compositionality has an effect even on the character-level: the meaning of a character is derived by the sum of its parts. In this paper, we model this effect by creating embeddings for characters based on their visual characteristics, creating an image for the character and running it through a convolutional neural network to produce a visual character embedding. Experiments on a text classification task demonstrate that such model allows for better processing of instances with rare characters in languages such as Chinese, Japanese, and Korean. Additionally, qualitative analyses demonstrate that our proposed model learns to focus on the parts of characters that carry semantic content, resulting in embeddings that are coherent in visual space.Comment: Accepted to ACL 201
    • …
    corecore