2 research outputs found

    A note on minimum linear arrangement for BC graphs

    Full text link
    A linear arrangement is a labeling or a numbering or a linear ordering of the vertices of a graph. In this paper we solve the minimum linear arrangement problem for bijective connection graphs (for short BC graphs) which include hypercubes, M\"{o}bius cubes, crossed cubes, twisted cubes, locally twisted cube, spined cube, ZZ-cubes, etc. as the subfamilies.Comment: 6 page

    Embedding onto Wheel-like Networks

    Full text link
    One of the important features of an interconnection network is its ability to efficiently simulate programs or parallel algorithms written for other architectures. Such a simulation problem can be mathematically formulated as a graph embedding problem. In this paper we compute the lower bound for dilation and congestion of embedding onto wheel-like networks. Further, we compute the exact dilation of embedding wheel-like networks into hypertrees, proving that the lower bound obtained is sharp. Again, we compute the exact congestion of embedding windmill graphs into circulant graphs, proving that the lower bound obtained is sharp. Further, we compute the exact wirelength of embedding wheels and fans into 1,2-fault hamiltonian graphs. Using this we estimate the exact wirelength of embedding wheels and fans into circulant graphs, generalized Petersen graphs, augmented cubes, crossed cubes, M\"{o}bius cubes, twisted cubes, twisted nn-cubes, locally twisted cubes, generalized twisted cubes, odd-dimensional cube connected cycle, hierarchical cubic networks, alternating group graphs, arrangement graphs, 3-regular planer hamiltonian graphs, star graphs, generalised matching networks, fully connected cubic networks, tori and 1-fault traceable graphs.Comment: 12 Pages, 5 Figure
    corecore