6,418 research outputs found

    What-and-Where to Match: Deep Spatially Multiplicative Integration Networks for Person Re-identification

    Full text link
    Matching pedestrians across disjoint camera views, known as person re-identification (re-id), is a challenging problem that is of importance to visual recognition and surveillance. Most existing methods exploit local regions within spatial manipulation to perform matching in local correspondence. However, they essentially extract \emph{fixed} representations from pre-divided regions for each image and perform matching based on the extracted representation subsequently. For models in this pipeline, local finer patterns that are crucial to distinguish positive pairs from negative ones cannot be captured, and thus making them underperformed. In this paper, we propose a novel deep multiplicative integration gating function, which answers the question of \emph{what-and-where to match} for effective person re-id. To address \emph{what} to match, our deep network emphasizes common local patterns by learning joint representations in a multiplicative way. The network comprises two Convolutional Neural Networks (CNNs) to extract convolutional activations, and generates relevant descriptors for pedestrian matching. This thus, leads to flexible representations for pair-wise images. To address \emph{where} to match, we combat the spatial misalignment by performing spatially recurrent pooling via a four-directional recurrent neural network to impose spatial dependency over all positions with respect to the entire image. The proposed network is designed to be end-to-end trainable to characterize local pairwise feature interactions in a spatially aligned manner. To demonstrate the superiority of our method, extensive experiments are conducted over three benchmark data sets: VIPeR, CUHK03 and Market-1501.Comment: Published at Pattern Recognition, Elsevie

    Query-guided End-to-End Person Search

    Full text link
    Person search has recently gained attention as the novel task of finding a person, provided as a cropped sample, from a gallery of non-cropped images, whereby several other people are also visible. We believe that i. person detection and re-identification should be pursued in a joint optimization framework and that ii. the person search should leverage the query image extensively (e.g. emphasizing unique query patterns). However, so far, no prior art realizes this. We introduce a novel query-guided end-to-end person search network (QEEPS) to address both aspects. We leverage a most recent joint detector and re-identification work, OIM [37]. We extend this with i. a query-guided Siamese squeeze-and-excitation network (QSSE-Net) that uses global context from both the query and gallery images, ii. a query-guided region proposal network (QRPN) to produce query-relevant proposals, and iii. a query-guided similarity subnetwork (QSimNet), to learn a query-guided reidentification score. QEEPS is the first end-to-end query-guided detection and re-id network. On both the most recent CUHK-SYSU [37] and PRW [46] datasets, we outperform the previous state-of-the-art by a large margin.Comment: Accepted as poster in CVPR 201

    On Classification with Bags, Groups and Sets

    Full text link
    Many classification problems can be difficult to formulate directly in terms of the traditional supervised setting, where both training and test samples are individual feature vectors. There are cases in which samples are better described by sets of feature vectors, that labels are only available for sets rather than individual samples, or, if individual labels are available, that these are not independent. To better deal with such problems, several extensions of supervised learning have been proposed, where either training and/or test objects are sets of feature vectors. However, having been proposed rather independently of each other, their mutual similarities and differences have hitherto not been mapped out. In this work, we provide an overview of such learning scenarios, propose a taxonomy to illustrate the relationships between them, and discuss directions for further research in these areas
    • …
    corecore