6,426 research outputs found

    Minimal instances for toric code ground states

    Full text link
    A decade ago Kitaev's toric code model established the new paradigm of topological quantum computation. Due to remarkable theoretical and experimental progress, the quantum simulation of such complex many-body systems is now within the realms of possibility. Here we consider the question, to which extent the ground states of small toric code systems differ from LU-equivalent graph states. We argue that simplistic (though experimentally attractive) setups obliterate the differences between the toric code and equivalent graph states; hence we search for the smallest setups on the square- and triangular lattice, such that the quasi-locality of the toric code hamiltonian becomes a distinctive feature. To this end, a purely geometric procedure to transform a given toric code setup into an LC-equivalent graph state is derived. In combination with an algorithmic computation of LC-equivalent graph states, we find the smallest non-trivial setup on the square lattice to contain 5 plaquettes and 16 qubits; on the triangular lattice the number of plaquettes and qubits is reduced to 4 and 9, respectively.Comment: 14 pages, 11 figure

    Homological Error Correction: Classical and Quantum Codes

    Get PDF
    We prove several theorems characterizing the existence of homological error correction codes both classically and quantumly. Not every classical code is homological, but we find a family of classical homological codes saturating the Hamming bound. In the quantum case, we show that for non-orientable surfaces it is impossible to construct homological codes based on qudits of dimension D>2D>2, while for orientable surfaces with boundaries it is possible to construct them for arbitrary dimension DD. We give a method to obtain planar homological codes based on the construction of quantum codes on compact surfaces without boundaries. We show how the original Shor's 9-qubit code can be visualized as a homological quantum code. We study the problem of constructing quantum codes with optimal encoding rate. In the particular case of toric codes we construct an optimal family and give an explicit proof of its optimality. For homological quantum codes on surfaces of arbitrary genus we also construct a family of codes asymptotically attaining the maximum possible encoding rate. We provide the tools of homology group theory for graphs embedded on surfaces in a self-contained manner.Comment: Revtex4 fil
    corecore