3,566 research outputs found

    On Universal Point Sets for Planar Graphs

    Full text link
    A set P of points in R^2 is n-universal, if every planar graph on n vertices admits a plane straight-line embedding on P. Answering a question by Kobourov, we show that there is no n-universal point set of size n, for any n>=15. Conversely, we use a computer program to show that there exist universal point sets for all n<=10 and to enumerate all corresponding order types. Finally, we describe a collection G of 7'393 planar graphs on 35 vertices that do not admit a simultaneous geometric embedding without mapping, that is, no set of 35 points in the plane supports a plane straight-line embedding of all graphs in G.Comment: Fixed incorrect numbers of universal point sets in the last par

    Recognizing and Drawing IC-planar Graphs

    Full text link
    IC-planar graphs are those graphs that admit a drawing where no two crossed edges share an end-vertex and each edge is crossed at most once. They are a proper subfamily of the 1-planar graphs. Given an embedded IC-planar graph GG with nn vertices, we present an O(n)O(n)-time algorithm that computes a straight-line drawing of GG in quadratic area, and an O(n3)O(n^3)-time algorithm that computes a straight-line drawing of GG with right-angle crossings in exponential area. Both these area requirements are worst-case optimal. We also show that it is NP-complete to test IC-planarity both in the general case and in the case in which a rotation system is fixed for the input graph. Furthermore, we describe a polynomial-time algorithm to test whether a set of matching edges can be added to a triangulated planar graph such that the resulting graph is IC-planar

    Fast and Compact Exact Distance Oracle for Planar Graphs

    Full text link
    For a given a graph, a distance oracle is a data structure that answers distance queries between pairs of vertices. We introduce an O(n5/3)O(n^{5/3})-space distance oracle which answers exact distance queries in O(logn)O(\log n) time for nn-vertex planar edge-weighted digraphs. All previous distance oracles for planar graphs with truly subquadratic space i.e., space O(n2ϵ)O(n^{2 - \epsilon}) for some constant ϵ>0\epsilon > 0) either required query time polynomial in nn or could only answer approximate distance queries. Furthermore, we show how to trade-off time and space: for any Sn3/2S \ge n^{3/2}, we show how to obtain an SS-space distance oracle that answers queries in time O((n5/2/S3/2)logn)O((n^{5/2}/ S^{3/2}) \log n). This is a polynomial improvement over the previous planar distance oracles with o(n1/4)o(n^{1/4}) query time

    Cubic Augmentation of Planar Graphs

    Full text link
    In this paper we study the problem of augmenting a planar graph such that it becomes 3-regular and remains planar. We show that it is NP-hard to decide whether such an augmentation exists. On the other hand, we give an efficient algorithm for the variant of the problem where the input graph has a fixed planar (topological) embedding that has to be preserved by the augmentation. We further generalize this algorithm to test efficiently whether a 3-regular planar augmentation exists that additionally makes the input graph connected or biconnected. If the input graph should become even triconnected, we show that the existence of a 3-regular planar augmentation is again NP-hard to decide.Comment: accepted at ISAAC 201
    corecore