40 research outputs found

    A study of universal algebras in fuzzy set theory

    Get PDF
    This thesis attempts a synthesis of two important and fast developing branches of mathematics, namely universal algebra and fuzzy set theory. Given an abstract algebra [X,F] where X is a non-empty set and F is a set of finitary operations on X, a fuzzy algebra [I×,F] is constructed by extending operations on X to that on I×, the set of fuzzy subsets of X (I denotes the unit interval), using Zadeh's extension principle. Homomorphisms between fuzzy algebras are defined and discussed. Fuzzy subalgebras of an algebra are defined to be elements of a fuzzy algebra which respect the extended algebra operations under inclusion of fuzzy subsets. The family of fuzzy subalgebras of an algebra is an algebraic closure system in I×. Thus the set of fuzzy subalgebras is a complete lattice. A fuzzy equivalence relation on a set is defined and a partition of such a relation into a class of fuzzy subsets is derived. Using these ideas, fuzzy functions between sets, fuzzy congruence relations, and fuzzy homomorphisms are defined. The kernels of fuzzy homomorphisms are proved to be fuzzy congruence relations, paving the way for the fuzzy isomorphism theorem. Finally, we sketch some ideas on free fuzzy subalgebras and polynomial algebras. In a nutshell, we can say that this thesis treats the central ideas of universal algebras, namely subalgebras, homomorphisms, equivalence and congruence relations, isomorphism theorems and free algebra in the fuzzy set theory settin

    Ω-Algebarski sistemi

    No full text
    The research work carried out in this thesis is aimed   at fuzzifying algebraic and relational structures in the framework of Ω-sets, where Ω is a complete lattice. Therefore we attempt to synthesis universal algebra and fuzzy set theory. Our  investigations of Ω-algebraic structures are based on Ω-valued equality, satisability of identities and cut techniques. We introduce Ω-algebras, Ω-valued congruences,  corresponding quotient  Ω-valued-algebras and  Ω-valued homomorphisms and we investigate connections among these notions. We prove that there is an Ω-valued homomorphism from an Ω-algebra to the corresponding quotient Ω-algebra. The kernel of an Ω-valued homomorphism is an Ω-valued congruence. When dealing with cut structures, we prove that an Ω-valued homomorphism determines classical homomorphisms among the corresponding quotient structures over cut  subalgebras. In addition, an  Ω-valued congruence determines a closure system of classical congruences on cut subalgebras. In addition, identities are preserved under Ω-valued homomorphisms. Therefore in the framework of Ω-sets we were able to introduce Ω-attice both as an ordered and algebraic structures. By this Ω-poset is defined as an Ω-set equipped with  Ω-valued order which is  antisymmetric with respect to the corresponding Ω-valued equality. Thus defining the notion of pseudo-infimum and pseudo-supremum we obtained the definition of Ω-lattice as an ordered structure. It is also defined that the an Ω-lattice as an algebra is a bi-groupoid equipped with an Ω-valued equality fulfilling some particular lattice Ω-theoretical formulas. Thus using axiom of choice we proved that the two approaches are equivalent. Then we also introduced the notion of complete Ω-lattice based on Ω-lattice. It was defined as a generalization of the classical complete lattice. We proved results that characterizes Ω-structures and many other interesting results. Also the connection between Ω-algebra and the notion of weak congruences is presented. We conclude with what we feel are most interesting areas for future work.Tema ovog rada je fazifikovanje algebarskih i relacijskih struktura u okviru omega- skupova, gdeje Ω kompletna mreza. U radu se bavimo sintezom oblasti univerzalne algebre i teorije rasplinutih (fazi) skupova. Naša istraživanja omega-algebarskih struktura bazirana su na omega-vrednosnoj jednakosti,zadovoljivosti identiteta i tehnici rada sa nivoima. U radu uvodimo omega-algebre,omega-vrednosne kongruencije, odgovarajuće omega-strukture, i omega-vrednosne homomorfizme i istražujemo veze izmedju ovih pojmova. Dokazujemo da postoji Ω -vrednosni homomorfizam iz Ω -algebre na odgovarajuću količničku Ω -algebru. Jezgro Ω -vrednosnog homomorfizma je Ω- vrednosna kongruencija. U vezi sa nivoima struktura, dokazujemo da Ω -vrednosni homomorfizam odredjuje klasične homomorfizme na odgovarajućim količničkim strukturama preko nivoa podalgebri. Osim toga, Ω-vrednosna kongruencija odredjuje sistem zatvaranja klasične kongruencije na nivo podalgebrama. Dalje, identiteti su očuvani u Ω- vrednosnim homomorfnim slikama.U nastavku smo u okviru Ω-skupova uveli Ω-mreže kao uredjene skupove i kao algebre i dokazali ekvivalenciju ovih pojmova. Ω-poset je definisan kao Ω -relacija koja je antisimetrična i tranzitivna u odnosu na odgovarajuću Ω-vrednosnu jednakost. Definisani su pojmovi pseudo-infimuma i pseudo-supremuma i tako smo dobili definiciju Ω-mreže kao uredjene strukture. Takodje je definisana Ω-mreža kao algebra, u ovim kontekstu nosač te strukture je bi-grupoid koji je saglasan sa Ω-vrednosnom jednakošću i ispunjava neke mrežno-teorijske formule. Koristeći aksiom izbora dokazali smo da su dva pristupa ekvivalentna. Dalje smo uveli i pojam potpune Ω-mreže kao uopštenje klasične potpune mreže. Dokazali smo još neke rezultate koji karakterišu Ω-strukture.Data je i veza izmedju Ω-algebre i pojma slabih kongruencija.Na kraju je dat prikaz pravaca daljih istrazivanja

    Fuzzy Mathematics

    Get PDF
    This book provides a timely overview of topics in fuzzy mathematics. It lays the foundation for further research and applications in a broad range of areas. It contains break-through analysis on how results from the many variations and extensions of fuzzy set theory can be obtained from known results of traditional fuzzy set theory. The book contains not only theoretical results, but a wide range of applications in areas such as decision analysis, optimal allocation in possibilistics and mixed models, pattern classification, credibility measures, algorithms for modeling uncertain data, and numerical methods for solving fuzzy linear systems. The book offers an excellent reference for advanced undergraduate and graduate students in applied and theoretical fuzzy mathematics. Researchers and referees in fuzzy set theory will find the book to be of extreme value

    Fuzzy Commutative Algebra

    Full text link

    One-Variable Fragments of First-Order Many-Valued Logics

    Get PDF
    In this thesis we study one-variable fragments of first-order logics. Such a one-variable fragment consists of those first-order formulas that contain only unary predicates and a single variable. These fragments can be viewed from a modal perspective by replacing the universal and existential quantifier with a box and diamond modality, respectively, and the unary predicates with corresponding propositional variables. Under this correspondence, the one-variable fragment of first-order classical logic famously corresponds to the modal logic S5. This thesis explores some such correspondences between first-order and modal logics. Firstly, we study first-order intuitionistic logics based on linear intuitionistic Kripke frames. We show that their one-variable fragments correspond to particular modal Gödel logics, defined over many-valued S5-Kripke frames. For a large class of these logics, we prove the validity problem to be decidable, even co-NP-complete. Secondly, we investigate the one-variable fragment of first-order Abelian logic, i.e., the first-order logic based on the ordered additive group of the reals. We provide two completeness results with respect to Hilbert-style axiomatizations: one for the one-variable fragment, and one for the one-variable fragment that does not contain any lattice connectives. Both these fragments are proved to be decidable. Finally, we launch a much broader algebraic investigation into one-variable fragments. We turn to the setting of first-order substructural logics (with the rule of exchange). Inspired by work on, among others, monadic Boolean algebras and monadic Heyting algebras, we define monadic commutative pointed residuated lattices as a first (algebraic) investigation into one-variable fragments of this large class of first-order logics. We prove a number of properties for these newly defined algebras, including a characterization in terms of relatively complete subalgebras as well as a characterization of their congruences

    Noncommutative lattices

    Get PDF
    The extended study of non-commutative lattices was begun in 1949 by Ernst Pascual Jordan, a theoretical and mathematical physicist and co-worker of Max Born and Werner Karl Heisenberg. Jordan introduced noncommutative lattices as algebraic structures potentially suitable to encompass the logic of the quantum world. The modern theory of noncommutative lattices began 40 years later with Jonathan Leech\u27s 1989 paper "Skew lattices in rings." Recently, noncommutative generalizations of lattices and related structures have seen an upsurge in interest, with new ideas and applications emerging, from quasilattices to skew Heyting algebras. Much of this activity is derived in some way from the initiation, over thirty years ago, of Jonathan Leech\u27s program of research that studied noncommutative variations of lattices. The present book consists of seven chapters, mainly covering skew lattices, quasilattices and paralattices, skew lattices of idempotents in rings and skew Boolean algebras. As such, it is the first research monograph covering major results due to the renewed study of noncommutative lattices. It will serve as a valuable graduate textbook on the subject, as well as handy reference to researchers of noncommutative algebras
    corecore