10,452 research outputs found

    Random Planar Lattices and Integrated SuperBrownian Excursion

    Get PDF
    In this paper, a surprising connection is described between a specific brand of random lattices, namely planar quadrangulations, and Aldous' Integrated SuperBrownian Excursion (ISE). As a consequence, the radius r_n of a random quadrangulation with n faces is shown to converge, up to scaling, to the width r=R-L of the support of the one-dimensional ISE. More generally the distribution of distances to a random vertex in a random quadrangulation is described in its scaled limit by the random measure ISE shifted to set the minimum of its support in zero. The first combinatorial ingredient is an encoding of quadrangulations by trees embedded in the positive half-line, reminiscent of Cori and Vauquelin's well labelled trees. The second step relates these trees to embedded (discrete) trees in the sense of Aldous, via the conjugation of tree principle, an analogue for trees of Vervaat's construction of the Brownian excursion from the bridge. From probability theory, we need a new result of independent interest: the weak convergence of the encoding of a random embedded plane tree by two contour walks to the Brownian snake description of ISE. Our results suggest the existence of a Continuum Random Map describing in term of ISE the scaled limit of the dynamical triangulations considered in two-dimensional pure quantum gravity.Comment: 44 pages, 22 figures. Slides and extended abstract version are available at http://www.loria.fr/~schaeffe/Pub/Diameter/ and http://www.iecn.u-nancy.fr/~chassain

    The structure of unicellular maps, and a connection between maps of positive genus and planar labelled trees

    Full text link
    A unicellular map is a map which has only one face. We give a bijection between a dominant subset of rooted unicellular maps of fixed genus and a set of rooted plane trees with distinguished vertices. The bijection applies as well to the case of labelled unicellular maps, which are related to all rooted maps by Marcus and Schaeffer's bijection. This gives an immediate derivation of the asymptotic number of unicellular maps of given genus, and a simple bijective proof of a formula of Lehman and Walsh on the number of triangulations with one vertex. From the labelled case, we deduce an expression of the asymptotic number of maps of genus g with n edges involving the ISE random measure, and an explicit characterization of the limiting profile and radius of random bipartite quadrangulations of genus g in terms of the ISE.Comment: 27pages, 6 figures, to appear in PTRF. Version 2 includes corrections from referee report in sections 6-

    The vertical profile of embedded trees

    Get PDF
    Consider a rooted binary tree with n nodes. Assign with the root the abscissa 0, and with the left (resp. right) child of a node of abscissa i the abscissa i-1 (resp. i+1). We prove that the number of binary trees of size n having exactly n_i nodes at abscissa i, for l =< i =< r (with n = sum_i n_i), is n0nlnr(n1+n1n01)liri0(ni1+ni+11ni1), \frac{n_0}{n_l n_r} {{n_{-1}+n_1} \choose {n_0-1}} \prod_{l\le i\le r \atop i\not = 0}{{n_{i-1}+n_{i+1}-1} \choose {n_i-1}}, with n_{l-1}=n_{r+1}=0. The sequence (n_l, ..., n_{-1};n_0, ..., n_r) is called the vertical profile of the tree. The vertical profile of a uniform random tree of size n is known to converge, in a certain sense and after normalization, to a random mesure called the integrated superbrownian excursion, which motivates our interest in the profile. We prove similar looking formulas for other families of trees whose nodes are embedded in Z. We also refine these formulas by taking into account the number of nodes at abscissa j whose parent lies at abscissa i, and/or the number of vertices at abscissa i having a prescribed number of children at abscissa j, for all i and j. Our proofs are bijective.Comment: 47 page

    Random real trees

    Get PDF
    We survey recent developments about random real trees, whose prototype is the Continuum Random Tree (CRT) introduced by Aldous in 1991. We briefly explain the formalism of real trees, which yields a neat presentation of the theory and in particular of the relations between discrete Galton-Watson trees and continuous random trees. We then discuss the particular class of self-similar random real trees called stable trees, which generalize the CRT. We review several important results concerning stable trees, including their branching property, which is analogous to the well-known property of Galton-Watson trees, and the calculation of their fractal dimension. We then consider spatial trees, which combine the genealogical structure of a real tree with spatial displacements, and we explain their connections with superprocesses. In the last section, we deal with a particular conditioning problem for spatial trees, which is closely related to asymptotics for random planar quadrangulations.Comment: 25 page

    The lineage process in Galton--Watson trees and globally centered discrete snakes

    Full text link
    We consider branching random walks built on Galton--Watson trees with offspring distribution having a bounded support, conditioned to have nn nodes, and their rescaled convergences to the Brownian snake. We exhibit a notion of ``globally centered discrete snake'' that extends the usual settings in which the displacements are supposed centered. We show that under some additional moment conditions, when nn goes to ++\infty, ``globally centered discrete snakes'' converge to the Brownian snake. The proof relies on a precise study of the lineage of the nodes in a Galton--Watson tree conditioned by the size, and their links with a multinomial process [the lineage of a node uu is the vector indexed by (k,j)(k,j) giving the number of ancestors of uu having kk children and for which uu is a descendant of the jjth one]. Some consequences concerning Galton--Watson trees conditioned by the size are also derived.Comment: Published in at http://dx.doi.org/10.1214/07-AAP450 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Multicritical continuous random trees

    Full text link
    We introduce generalizations of Aldous' Brownian Continuous Random Tree as scaling limits for multicritical models of discrete trees. These discrete models involve trees with fine-tuned vertex-dependent weights ensuring a k-th root singularity in their generating function. The scaling limit involves continuous trees with branching points of order up to k+1. We derive explicit integral representations for the average profile of this k-th order multicritical continuous random tree, as well as for its history distributions measuring multi-point correlations. The latter distributions involve non-positive universal weights at the branching points together with fractional derivative couplings. We prove universality by rederiving the same results within a purely continuous axiomatic approach based on the resolution of a set of consistency relations for the multi-point correlations. The average profile is shown to obey a fractional differential equation whose solution involves hypergeometric functions and matches the integral formula of the discrete approach.Comment: 34 pages, 12 figures, uses lanlmac, hyperbasics, eps
    corecore