345,001 research outputs found

    How to Write Mass Emails at Work That People Actually Like : What Yummy Spam Looks Like

    Get PDF
    This handout lists 11 (eleven) recommended steps to take when writing mass emails for work. Writing and sending out spam emails is a regular requirement of library work but not everyone knows how to do this while still looking professional. This short handout succinctly outlines the recommended steps from someone who regularly sends out mass emails for work

    Characterizing and Predicting Email Deferral Behavior

    Full text link
    Email triage involves going through unhandled emails and deciding what to do with them. This familiar process can become increasingly challenging as the number of unhandled email grows. During a triage session, users commonly defer handling emails that they cannot immediately deal with to later. These deferred emails, are often related to tasks that are postponed until the user has more time or the right information to deal with them. In this paper, through qualitative interviews and a large-scale log analysis, we study when and what enterprise email users tend to defer. We found that users are more likely to defer emails when handling them involves replying, reading carefully, or clicking on links and attachments. We also learned that the decision to defer emails depends on many factors such as user's workload and the importance of the sender. Our qualitative results suggested that deferring is very common, and our quantitative log analysis confirms that 12% of triage sessions and 16% of daily active users had at least one deferred email on weekdays. We also discuss several deferral strategies such as marking emails as unread and flagging that are reported by our interviewees, and illustrate how such patterns can be also observed in user logs. Inspired by the characteristics of deferred emails and contextual factors involved in deciding if an email should be deferred, we train a classifier for predicting whether a recently triaged email is actually deferred. Our experimental results suggests that deferral can be classified with modest effectiveness. Overall, our work provides novel insights about how users handle their emails and how deferral can be modeled

    Minimizing the Time of Spam Mail Detection by Relocating Filtering System to the Sender Mail Server

    Full text link
    Unsolicited Bulk Emails (also known as Spam) are undesirable emails sent to massive number of users. Spam emails consume the network resources and cause lots of security uncertainties. As we studied, the location where the spam filter operates in is an important parameter to preserve network resources. Although there are many different methods to block spam emails, most of program developers only intend to block spam emails from being delivered to their clients. In this paper, we will introduce a new and efficient approach to prevent spam emails from being transferred. The result shows that if we focus on developing a filtering method for spams emails in the sender mail server rather than the receiver mail server, we can detect the spam emails in the shortest time consequently to avoid wasting network resources.Comment: 10 pages, 7 figure

    Analysis of the temporal and structural features of threads in a mailing-list

    Full text link
    A link stream is a collection of triplets (t,u,v)(t,u,v) indicating that an interaction occurred between uu and vv at time tt. Link streams model many real-world situations like email exchanges between individuals, connections between devices, and others. Much work is currently devoted to the generalization of classical graph and network concepts to link streams. In this paper, we generalize the existing notions of intra-community density and inter-community density. We focus on emails exchanges in the Debian mailing-list, and show that threads of emails, like communities in graphs, are dense subsets loosely connected from a link stream perspective

    Analyzing Social and Stylometric Features to Identify Spear phishing Emails

    Full text link
    Spear phishing is a complex targeted attack in which, an attacker harvests information about the victim prior to the attack. This information is then used to create sophisticated, genuine-looking attack vectors, drawing the victim to compromise confidential information. What makes spear phishing different, and more powerful than normal phishing, is this contextual information about the victim. Online social media services can be one such source for gathering vital information about an individual. In this paper, we characterize and examine a true positive dataset of spear phishing, spam, and normal phishing emails from Symantec's enterprise email scanning service. We then present a model to detect spear phishing emails sent to employees of 14 international organizations, by using social features extracted from LinkedIn. Our dataset consists of 4,742 targeted attack emails sent to 2,434 victims, and 9,353 non targeted attack emails sent to 5,912 non victims; and publicly available information from their LinkedIn profiles. We applied various machine learning algorithms to this labeled data, and achieved an overall maximum accuracy of 97.76% in identifying spear phishing emails. We used a combination of social features from LinkedIn profiles, and stylometric features extracted from email subjects, bodies, and attachments. However, we achieved a slightly better accuracy of 98.28% without the social features. Our analysis revealed that social features extracted from LinkedIn do not help in identifying spear phishing emails. To the best of our knowledge, this is one of the first attempts to make use of a combination of stylometric features extracted from emails, and social features extracted from an online social network to detect targeted spear phishing emails.Comment: Detection of spear phishing using social media feature
    corecore