69,026 research outputs found

    Modelling Users, Intentions, and Structure in Spoken Dialog

    Full text link
    We outline how utterances in dialogs can be interpreted using a partial first order logic. We exploit the capability of this logic to talk about the truth status of formulae to define a notion of coherence between utterances and explain how this coherence relation can serve for the construction of AND/OR trees that represent the segmentation of the dialog. In a BDI model we formalize basic assumptions about dialog and cooperative behaviour of participants. These assumptions provide a basis for inferring speech acts from coherence relations between utterances and attitudes of dialog participants. Speech acts prove to be useful for determining dialog segments defined on the notion of completing expectations of dialog participants. Finally, we sketch how explicit segmentation signalled by cue phrases and performatives is covered by our dialog model.Comment: 17 page

    Neuromorphic analogue VLSI

    Get PDF
    Neuromorphic systems emulate the organization and function of nervous systems. They are usually composed of analogue electronic circuits that are fabricated in the complementary metal-oxide-semiconductor (CMOS) medium using very large-scale integration (VLSI) technology. However, these neuromorphic systems are not another kind of digital computer in which abstract neural networks are simulated symbolically in terms of their mathematical behavior. Instead, they directly embody, in the physics of their CMOS circuits, analogues of the physical processes that underlie the computations of neural systems. The significance of neuromorphic systems is that they offer a method of exploring neural computation in a medium whose physical behavior is analogous to that of biological nervous systems and that operates in real time irrespective of size. The implications of this approach are both scientific and practical. The study of neuromorphic systems provides a bridge between levels of understanding. For example, it provides a link between the physical processes of neurons and their computational significance. In addition, the synthesis of neuromorphic systems transposes our knowledge of neuroscience into practical devices that can interact directly with the real world in the same way that biological nervous systems do

    Cooperativity in the enhanced piezoelectric response of polymer nanowires

    Full text link
    We provide a detailed insight into piezoelectric energy generation from arrays of polymer nanofibers. For sake of comparison, we firstly measure individual poly(vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFe)) fibers at well-defined levels of compressive stress. Under an applied load of 2 mN, single nanostructures generate a voltage of 0.45 mV. We show that under the same load conditions, fibers in dense arrays exhibit a voltage output higher by about two orders of magnitude. Numerical modelling studies demonstrate that the enhancement of the piezoelectric response is a general phenomenon associated to the electromechanical interaction among adjacent fibers, namely a cooperative effect depending on specific geometrical parameters. This establishes new design rules for next piezoelectric nano-generators and sensors.Comment: 31 pages, 11 figures, 1 tabl
    • …
    corecore