58,369 research outputs found

    Combinatorics of branchings in higher dimensional automata

    Full text link
    We explore the combinatorial properties of the branching areas of execution paths in higher dimensional automata. Mathematically, this means that we investigate the combinatorics of the negative corner (or branching) homology of a globular ω\omega-category and the combinatorics of a new homology theory called the reduced branching homology. The latter is the homology of the quotient of the branching complex by the sub-complex generated by its thin elements. Conjecturally it coincides with the non reduced theory for higher dimensional automata, that is ω\omega-categories freely generated by precubical sets. As application, we calculate the branching homology of some ω\omega-categories and we give some invariance results for the reduced branching homology. We only treat the branching side. The merging side, that is the case of merging areas of execution paths is similar and can be easily deduced from the branching side.Comment: Final version, see http://www.tac.mta.ca/tac/volumes/8/n12/abstract.htm

    Complex and Adaptive Dynamical Systems: A Primer

    Full text link
    An thorough introduction is given at an introductory level to the field of quantitative complex system science, with special emphasis on emergence in dynamical systems based on network topologies. Subjects treated include graph theory and small-world networks, a generic introduction to the concepts of dynamical system theory, random Boolean networks, cellular automata and self-organized criticality, the statistical modeling of Darwinian evolution, synchronization phenomena and an introduction to the theory of cognitive systems. It inludes chapter on Graph Theory and Small-World Networks, Chaos, Bifurcations and Diffusion, Complexity and Information Theory, Random Boolean Networks, Cellular Automata and Self-Organized Criticality, Darwinian evolution, Hypercycles and Game Theory, Synchronization Phenomena and Elements of Cognitive System Theory.Comment: unformatted version of the textbook; published in Springer, Complexity Series (2008, second edition 2010

    Partially ordered models

    Full text link
    We provide a formal definition and study the basic properties of partially ordered chains (POC). These systems were proposed to model textures in image processing and to represent independence relations between random variables in statistics (in the later case they are known as Bayesian networks). Our chains are a generalization of probabilistic cellular automata (PCA) and their theory has features intermediate between that of discrete-time processes and the theory of statistical mechanical lattice fields. Its proper definition is based on the notion of partially ordered specification (POS), in close analogy to the theory of Gibbs measure. This paper contains two types of results. First, we present the basic elements of the general theory of POCs: basic geometrical issues, definition in terms of conditional probability kernels, extremal decomposition, extremality and triviality, reconstruction starting from single-site kernels, relations between POM and Gibbs fields. Second, we prove three uniqueness criteria that correspond to the criteria known as bounded uniformity, Dobrushin and disagreement percolation in the theory of Gibbs measures.Comment: 54 pages, 11 figures, 6 simulations. Submited to Journal of Stat. Phy

    ALMA: Automata Learner using Modulo 2 Multiplicity Automata

    Full text link
    We present ALMA (Automata Learner using modulo 2 Multiplicity Automata), a Java-based tool that can learn any automaton accepting regular languages of finite or infinite words with an implementable membership query function. Users can either pass as input their own membership query function, or use the predefined membership query functions for modulo 2 multiplicity automata and non-deterministic B\"uchi automata. While learning, ALMA can output the state of the observation table after every equivalence query, and upon termination, it can output the dimension, transition matrices, and final vector of the learned modulo 2 multiplicity automaton. Users can test whether a word is accepted by performing a membership query on the learned automaton. ALMA follows the polynomial-time learning algorithm of Beimel et. al. (Learning functions represented as multiplicity automata. J. ACM 47(3), 2000), which uses membership and equivalence queries and represents hypotheses using modulo 2 multiplicity automata. ALMA also implements a polynomial-time learning algorithm for strongly unambiguous B\"uchi automata by Angluin et. al. (Strongly unambiguous B\"uchi automata are polynomially predictable with membership queries. CSL 2020), and a minimization algorithm for modulo 2 multiplicity automata by Sakarovitch (Elements of Automata Theory. 2009)

    Rules and derivations in an elementary logic course

    Get PDF
    When teaching an elementary logic course to students who have a general scientific background but have never been exposed to logic, we have to face the problem that the notions of deduction rule and of derivation are completely new to them, and are related to nothing they already know, unlike, for instance, the notion of model, that can be seen as a generalization of the notion of algebraic structure. In this note, we defend the idea that one strategy to introduce these notions is to start with the notion of inductive definition [1]. Then, the notion of derivation comes naturally. We also defend the idea that derivations are pervasive in logic and that defining precisely this notion at an early stage is a good investment to later define other notions in proof theory, computability theory, automata theory, ... Finally, we defend the idea that to define the notion of derivation precisely, we need to distinguish two notions of derivation: labeled with elements and labeled with rule names. This approach has been taken in [2]
    corecore