8,050 research outputs found

    A Constrained L1 Minimization Approach to Sparse Precision Matrix Estimation

    Get PDF
    A constrained L1 minimization method is proposed for estimating a sparse inverse covariance matrix based on a sample of nn iid pp-variate random variables. The resulting estimator is shown to enjoy a number of desirable properties. In particular, it is shown that the rate of convergence between the estimator and the true ss-sparse precision matrix under the spectral norm is slogp/ns\sqrt{\log p/n} when the population distribution has either exponential-type tails or polynomial-type tails. Convergence rates under the elementwise LL_{\infty} norm and Frobenius norm are also presented. In addition, graphical model selection is considered. The procedure is easily implementable by linear programming. Numerical performance of the estimator is investigated using both simulated and real data. In particular, the procedure is applied to analyze a breast cancer dataset. The procedure performs favorably in comparison to existing methods.Comment: To appear in Journal of the American Statistical Associatio

    On Graphical Models via Univariate Exponential Family Distributions

    Full text link
    Undirected graphical models, or Markov networks, are a popular class of statistical models, used in a wide variety of applications. Popular instances of this class include Gaussian graphical models and Ising models. In many settings, however, it might not be clear which subclass of graphical models to use, particularly for non-Gaussian and non-categorical data. In this paper, we consider a general sub-class of graphical models where the node-wise conditional distributions arise from exponential families. This allows us to derive multivariate graphical model distributions from univariate exponential family distributions, such as the Poisson, negative binomial, and exponential distributions. Our key contributions include a class of M-estimators to fit these graphical model distributions; and rigorous statistical analysis showing that these M-estimators recover the true graphical model structure exactly, with high probability. We provide examples of genomic and proteomic networks learned via instances of our class of graphical models derived from Poisson and exponential distributions.Comment: Journal of Machine Learning Researc
    corecore