342,813 research outputs found

    Electrostatic potential profiles of molecular conductors

    Full text link
    The electrostatic potential across a short ballistic molecular conductor depends sensitively on the geometry of its environment, and can affect its conduction significantly by influencing its energy levels and wave functions. We illustrate some of the issues involved by evaluating the potential profiles for a conducting gold wire and an aromatic phenyl dithiol molecule in various geometries. The potential profile is obtained by solving Poisson's equation with boundary conditions set by the contact electrochemical potentials and coupling the result self-consistently with a nonequilibrium Green's function (NEGF) formulation of transport. The overall shape of the potential profile (ramp vs. flat) depends on the feasibility of transverse screening of electric fields. Accordingly, the screening is better for a thick wire, a multiwalled nanotube or a close-packed self-assembled monolayer (SAM), in comparison to a thin wire, a single-walled nanotube or an isolated molecular conductor. The electrostatic potential further governs the alignment or misalignment of intramolecular levels, which can strongly influence the molecular I-V characteristic. An external gate voltage can modify the overall potential profile, changing the current-voltage (I-V) characteristic from a resonant conducting to a saturating one. The degree of saturation and gate modulation depends on the metal-induced-gap states (MIGS) and on the electrostatic gate control parameter set by the ratio of the gate oxide thickness to the channel length.Comment: to be published in Phys. Rev. B 69, No.3, 0353XX (2004

    Bernoulli potential in type-I and weak type-II superconductors: III. Electrostatic potential above the vortex lattice

    Full text link
    The electrostatic potential above the Abrikosov vortex lattice, discussed earlier by Blatter {\em et al.} {[}PRL {\bf 77}, 566 (1996){]}, is evaluated within the Ginzburg-Landau theory. Unlike previous studies we include the surface dipole. Close to the critical temperature, the surface dipole reduces the electrostatic potential to values below a sensitivity of recent sensors. At low temperatures the surface dipole is less effective and the electrostatic potential remains observable as predicted earlier.Comment: 8 pages 5 figure

    Potential fluctuations in graphene due to correlated charged impurities in substrate

    Full text link
    We evaluate the autocorrelation function of the electrostatic potential in doped graphene due to nearby charged impurities. The screening of those impurities is described by a combination of the polarization function for graphene in random phase approximation with the electrostatic Green's function of the surrounding dielectrics. Using the hard-disk model for a two-dimensional distribution of impurities, we show that large correlation lengths between impurities can give rise to anti-correlation in the electrostatic potential, in agreement with recent experiments.Comment: To be published in to Applied Physics Letter

    Anomalies in electrostatic calibrations for the measurement of the Casimir force in a sphere-plane geometry

    Get PDF
    We have performed precision electrostatic calibrations in the sphere-plane geometry and observed anomalous behavior. Namely, the scaling exponent of the electrostatic signal with distance was found to be smaller than expected on the basis of the pure Coulombian contribution and the residual potential found to be distance dependent. We argue that these findings affect the accuracy of the electrostatic calibrations and invite reanalysis of previous determinations of the Casimir force.Comment: 4 pages, 4 figure

    Stabilization of single-electron pumps by high magnetic fields

    Full text link
    We study the effect of perpendicular magnetic fields on a single-electron system with a strongly time-dependent electrostatic potential. Continuous improvements to the current quantization in these electron pumps are revealed by high-resolution measurements. Simulations show that the sensitivity of tunnel rates to the barrier potential is enhanced, stabilizing particular charge states. Nonadiabatic excitations are also suppressed due to a reduced sensitivity of the Fock-Darwin states to electrostatic potential. The combination of these effects leads to significantly more accurate current quantization
    corecore