4,105 research outputs found

    Competitive adsorption of p-hydroxybenzoic acid and phenol on activated carbon : experimental study and modelling.

    Get PDF
    The competitive adsorption of phenol and p-hydroxybenzoic acid (4HBA) has been investigated on activated carbon (AC) for a wide range of concentrations under unbuffered conditions. The results show a preferential adsorption of 4HBA which can be explained by the lower solubility of 4HBA and the electrostatic interactions between the AC and the ionic form of the molecule in this range of pH. The Langmuir isotherm is found suitable to describe the single-component adsorptions, indicating a monolayer adsorption in accordance with the microporous nature of the AC. Then the empirical extended Langmuir model and the predictive Ideal Adsorption Solution Theory model have been compared for competitive adsorption. When using parameter values optimized for single pollutants, both models show rather poor agreement with mixture data. However after fitting the extended Langmuir parameters with the whole data set, better results can be obtained, showing that there is some peculiar behaviour of the mixture under oxic conditions, probably tied to the effect of 4HBA on the irreversible adsorption of phenol

    A Constructivist View of Newton’s Mechanics

    Get PDF
    In the present essay we attempt to reconstruct Newtonian mechanics under the guidance of logical principles and of a constructive approach related to the genetic epistemology of Piaget and García (Psychogenesis and the history of science, Columbia University Press, New York, 1989). Instead of addressing Newton’s equations as a set of axioms, ultimately given by the revelation of a prodigious mind, we search for the fundamental knowledge, beliefs and provisional assumptions that can produce classical mechanics. We start by developing our main tool: the no arbitrariness principle, that we present in a form that is apt for a mathematical theory as classical mechanics. Subsequently, we introduce the presence of the observer, analysing then the relation objective–subjective and seeking objectivity going across subjectivity. We take special care of establishing the precedence among all contributions to mechanics, something that can be better appreciated by considering the consequences of removing them: (a) the consequence of renouncing logic and the laws of understanding is not being able to understand the world, (b) renouncing the early elaborations of primary concepts such as time and space leads to a dissociation between everyday life and physics, the latter becoming entirely pragmatic and justified a-posteriori (because it is convenient), (c) changing our temporary beliefs has no real cost other than effort. Finally, we exemplify the present approach by reconsidering the constancy of the velocity of light. It is shown that it is a result of Newtonian mechanics, rather than being in contradiction with it. We also indicate the hidden assumption that leads to the (apparent) contradiction.Fil: Solari, Hernan Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Natiello, Mario Alberto. Lund University; Sueci

    Polymer-liquid crystal interface: a molecular dynamics study

    Get PDF
    Liquid crystals (LCs) are an interesting class of soft condensed matter systems characterized by an unusual combination of fluidity and long-range order, mainly known for their applications in displays (LCDs). However, the interest in LC continues to grow pushed by their application in new technologies in medicine, optical imaging, micro and nano technologies etc. In LCDs uniaxial alignment of LCs is mainly achieved by a rubbing process. During this treatment, the surfaces of polymer coated display substrates are rubbed in one direction by a rotating cylinder covered with a rubbing cloth. Basically, LC alignment involves two possible aligning directions: uniaxial planar (homogeneous) and vertical (homeotropic) to the display substrate. An interesting unresolved question concerning LCs regards the origin of their alignment on rubbed surfaces, and in particular on the polymeric ones used in the display industry. Most studies have shown that LCs on the surface of the rubbed polymer film layer are lying parallel to the rubbing direction. In these systems, micrometric grooves are generated on the film surface along the rubbing direction and also the polymer chains are stretched in this direction. Both the parallel aligned microgrooves and the polymer chains at the film surface may play a role in the LC alignment and it is not easy to quantify the effect of each contribution. The work described in this thesis is an attempt to find new microscopic evidences on the origin of LC alignment on polymeric surfaces through molecular dynamics (MD) simulations, which allow the investigation of the phenomenon with atomic detail. The importance of the arrangement of the polymeric chains in LCs alignment was studied by performing MD simulations of a thin film of a typical nematic LC, 4-cyano-4’-pentylbiphenyl (5CB), in contact with two different polymers: poly(methyl methacrylate)(PMMA) and polystyrene (PS). At least four factors are believed to influence the LC alignment: 1. the interactions of LCs with the backbone vinyl chains; 2. the interactions of LCs with the oriented side groups; 3. the anisotropic interactions of LCs with nanometric grooves; 4. the presence of static surface charges. Here we exclude the effect of microgrooves and of static surface charges from our virtual experiment, by using flat and neutral polymer surfaces, with the aim of isolating the chemical driving factors influencing the alignment of LC phases on polymeric surfaces

    The Joint Center for Energy Storage Research: A New Paradigm for Battery Research and Development

    Full text link
    The Joint Center for Energy Storage Research (JCESR) seeks transformational change in transportation and the electricity grid driven by next generation high performance, low cost electricity storage. To pursue this transformative vision JCESR introduces a new paradigm for battery research: integrating discovery science, battery design, research prototyping and manufacturing collaboration in a single highly interactive organization. This new paradigm will accelerate the pace of discovery and innovation and reduce the time from conceptualization to commercialization. JCESR applies its new paradigm exclusively to beyond-lithium-ion batteries, a vast, rich and largely unexplored frontier. This review presents JCESR's motivation, vision, mission, intended outcomes or legacies and first year accomplishments.Comment: 17 pages, 14 figures, 96 reference

    Ultrafast Laser Nanostructured ITO Acts as Liquid Crystal Alignment Layer and Higher Transparency Electrode

    Full text link
    Electrodes with higher transparency that can also align liquid crystals (LCs) are of high importance for improved costs and energy consumption of LC displays. Here we demonstrate for the first time alignment of liquid crystals on femtosecond laser nanostructured indium tin oxide (ITO) coated glass exhibiting also higher transparency due to the less interface reflections. The nano paterns were created by fs laser directlly on ITO films without any additional spin coating materials or lithography procces. Nine regions of laser-induced nanostructures were fabricated with different alignment orientations and various pulse energy levels on top of the ITO. The device interfacial anchoring energy was found to be comparable to the anchoring energy of nematic LC on photosensitive polymers. The device exhibits contrast of 30:1 and relaxation time of 330ms expected for thick LC devices. The measured transparency of the LC device with two ITO nanograting substrates is 10% higher than the uniform ITO film based LC devices. The alignment methodology presented here paves the way for improved LC displays and new structured LC photonic devices

    "What's (the) Matter?", A Show on Elementary Particle Physics with 28 Demonstration Experiments

    Full text link
    We present the screenplay of a physics show on particle physics, by the Physikshow of Bonn University. The show is addressed at non-physicists aged 14+ and communicates basic concepts of elementary particle physics including the discovery of the Higgs boson in an entertaining fashion. It is also demonstrates a successful outreach activity heavily relying on the university physics students. This paper is addressed at anybody interested in particle physics and/or show physics. This paper is also addressed at fellow physicists working in outreach, maybe the experiments and our choice of simple explanations will be helpful. Furthermore, we are very interested in related activities elsewhere, in particular also demonstration experiments relevant to particle physics, as often little of this work is published. Our show involves 28 live demonstration experiments. These are presented in an extensive appendix, including photos and technical details. The show is set up as a quest, where 2 students from Bonn with the aid of a caretaker travel back in time to understand the fundamental nature of matter. They visit Rutherford and Geiger in Manchester around 1911, who recount their famous experiment on the nucleus and show how particle detectors work. They travel forward in time to meet Lawrence at Berkeley around 1950, teaching them about the how and why of accelerators. Next, they visit Wu at DESY, Hamburg, around 1980, who explains the strong force. They end up in the LHC tunnel at CERN, Geneva, Switzerland in 2012. Two experimentalists tell them about colliders and our heroes watch live as the Higgs boson is produced and decays. The show was presented in English at Oxford University and University College London, as well as Padua University and ICTP Trieste. It was 1st performed in German at the Deutsche Museum, Bonn (5/'14). The show has eleven speaking parts and involves in total 20 people.Comment: 113 pages, 88 figures. An up to date version of the paper with high resolution pictures can be found at http://www.th.physik.uni-bonn.de/People/dreiner/Downloads/. In v2 the acknowledgements and a citation are correcte

    Metal–iodine batteries: achievements, challenges, and future

    Get PDF
    Metal–iodine batteries (MIBs) are becoming increasingly popular due to their intrinsic advantages, such as a limited number of reaction intermediates, high electrochemical reversibility, eco-friendliness, safety, and manageable cost. This review details past attempts and breakthroughs in developing iodine cathode-based (rechargeable) metal battery technology, to arrive at a comprehensive discussion and analysis of the battery's working mechanisms and fundamental challenges. Especially, the realization of available rechargeable MIBs relies heavily on the joint action of the battery components. We therefore cover here the progress starting from electrodes, electrolytes, and separator/interlayer requirements to introduce various types of MIBs and finally a critical analysis of the status quo, allowing us to gain insight into the roadblocks that still exist in MIBs. Also, we collect and compare the electrochemical performance of MIBs by category with listing their actual active material loading species and cell fabrication parameters. Finally, we conclude with recommendations for future strategies to leverage current advances in battery engineering, characteristics, and computational designs, all of which enable MIBs to reach their full potential in the energy age ultimately
    • …
    corecore