11,386 research outputs found

    Scanning electrochemical cell microscopy : a versatile technique for nanoscale electrochemistry and functional imaging

    Get PDF
    Scanning electrochemical cell microscopy (SECCM) is a new pipette-based imaging technique purposely designed to allow simultaneous electrochemical, conductance, and topographical visualization of surfaces and interfaces. SECCM uses a tiny meniscus or droplet, confined between the probe and the surface, for high-resolution functional imaging and nanoscale electrochemical measurements. Here we introduce this technique and provide an overview of its principles, instrumentation, and theory. We discuss the power of SECCM in resolving complex structure-activity problems and provide considerable new information on electrode processes by referring to key example systems, including graphene, graphite, carbon nanotubes, nanoparticles, and conducting diamond. The many longstanding questions that SECCM has been able to answer during its short existence demonstrate its potential to become a major technique in electrochemistry and interfacial science

    Review on carbon-derived, solid-state, micro and nano sensors for electrochemical sensing applications

    Get PDF
    The aim of this review is to summarize the most relevant contributions in the development of electrochemical sensors based on carbon materials in the recent years. There have been increasing numbers of reports on the first application of carbon derived materials for the preparation of an electrochemical sensor. These include carbon nanotubes, diamond like carbon films and diamond film-based sensors demonstrating that the particular structure of these carbon material and their unique properties make them a very attractive material for the design of electrochemical biosensors and gas sensors. Carbon nanotubes (CNT) have become one of the most extensively studied nanostructures because of their unique properties. CNT can enhance the electrochemical reactivity of important biomolecules and can promote the electron-transfer reactions of proteins (including those where the redox center is embedded deep within the glycoprotein shell). In addition to enhanced electrochemical reactivity, CNT-modified electrodes have been shown useful to be coated with biomolecules (e.g., nucleic acids) and to alleviate surface fouling effects (such as those involved in the NADH oxidation process). The remarkable sensitivity of CNT conductivity with the surface adsorbates permits the use of CNT as highly sensitive nanoscale sensors. These properties make CNT extremely attractive for a wide range of electrochemical sensors ranging from amperometric enzyme electrodes to DNA hybridization biosensors. Recently, a CNT sensor based fast diagnosis method using non-treated blood assay has been developed for specific detection of hepatitis B virus (HBV) (human liver diseases, such as chronic hepatitis, cirrhosis, and hepatocellular carcinoma caused by hepatitis B virus). The linear detection limits for HBV plasma is in the range 0.5–3.0 μL−1 and for anti- HBVs 0.035–0.242 mg/mL in a 0.1 M NH4H2PO4 electrolyte solution. These detection limits enables early detection of HBV infection in suspected serum samples. Therefore, non-treated blood serum can be directly applied for real-time sensitive detection in medical diagnosis as well as in direct in vivo monitoring. Synthetic diamond has been recognized as an extremely attractive material for both (bio-) chemical sensing and as an interface to biological systems. Synthetic diamond have outstanding electrochemical properties, superior chemical inertness and biocompatibility. Recent advances in the synthesis of highly conducting nanocrystalline-diamond thin films and nano wires have lead to an entirely new class of electrochemical biosensors and bio-inorganic interfaces. In addition, it also combines with development of new chemical approaches to covalently attach biomolecules on the diamond surface also contributed to the advancement of diamond-based biosensors. The feasibility of a capacitive field-effect EDIS (electrolyte-diamond-insulatorsemiconductor) platform for multi-parameter sensing is demonstrated with an O-terminated nanocrystalline-diamond (NCD) film as transducer material for the detection of pH and penicillin concentration. This has also been extended for the label-free electrical monitoring of adsorption and binding of charged macromolecules. One more recent study demonstrated a novel bio-sensing platform, which is introduced by combination of a) geometrically controlled DNA bonding using vertically aligned diamond nano-wires and b) the superior electrochemical sensing properties of diamond as transducer material. Diamond nanowires can be a new approach towards next generation electrochemical gene sensor platforms. This review highlights the advantages of these carbon materials to promote different electron transfer reactions specially those related to biomolecules. Different strategies have been applied for constructing carbon material-based electrochemical sensors, their analytical performance and future prospects are discussed

    Electrosorption at metal surfaces from first principles

    No full text
    Electrosorption of solvated species at metal electrodes is a most fundamental class of processes in interfacial electrochemistry. Here, we use its sensitive dependence on the electric double layer to assess the performance of ab initio thermodynamics approaches increasingly used for the first-principles description of electrocatalysis. We show analytically that computational hydrogen electrode calculations at zero net-charge can be understood as a first-order approximation to a fully grand canonical approach. Notably, higher-order terms in the applied potential caused by the charging of the double layer include contributions from adsorbate-induced changes in the work function and in the interfacial capacitance. These contributions are essential to yield prominent electrochemical phenomena such as non-Nernstian shifts of electrosorption peaks and non-integer electrosorption valencies. We illustrate this by calculating peak shifts for H on Pt electrodes and electrosorption valencies of halide ions on Ag electrodes, obtaining qualitative agreement with experimental data already when considering only second order terms. The results demonstrate the agreement between classical electrochemistry concepts and a first-principles fully grand canonical description of electrified interfaces and shed new light on the widespread computational hydrogen electrode approach

    Nanowrinkled Carbon Aerogels Embedded with FeN x Sites as Effective Oxygen Electrodes for Rechargeable Zinc-Air Battery.

    Get PDF
    Rational design of single-metal atom sites in carbon substrates by a flexible strategy is highly desired for the preparation of high-performance catalysts for metal-air batteries. In this study, biomass hydrogel reactors are utilized as structural templates to prepare carbon aerogels embedded with single iron atoms by controlled pyrolysis. The tortuous and interlaced hydrogel chains lead to the formation of abundant nanowrinkles in the porous carbon aerogels, and single iron atoms are dispersed and stabilized within the defective carbon skeletons. X-ray absorption spectroscopy measurements indicate that the iron centers are mostly involved in the coordination structure of FeN4, with a minor fraction (ca. 1/5) in the form of FeN3C. First-principles calculations show that the FeN x sites in the Stone-Wales configurations induced by the nanowrinkles of the hierarchically porous carbon aerogels show a much lower free energy than the normal counterparts. The resulting iron and nitrogen-codoped carbon aerogels exhibit excellent and reversible oxygen electrocatalytic activity, and can be used as bifunctional cathode catalysts in rechargeable Zn-air batteries, with a performance even better than that based on commercial Pt/C and RuO2 catalysts. Results from this study highlight the significance of structural distortions of the metal sites in carbon matrices in the design and engineering of highly active single-atom catalysts

    Evaluation of Reduced-Graphene-Oxide Aligned with WO3-Nanorods as Support for Pt Nanoparticles during Oxygen Electroreduction in Acid Medium

    Full text link
    Hybrid supports composed of chemically-reduced graphene-oxide-aligned with tungsten oxide nanowires are considered here as active carriers for dispersed platinum with an ultimate goal of producing improved catalysts for electroreduction of oxygen in acid medium. Here WO3 nanostructures are expected to be attached mainly to the edges of graphene thus making the hybrid structure not only highly porous but also capable of preventing graphene stacking and creating numerous sites for the deposition of Pt nanoparticles. Comparison has been made to the analogous systems utilizing neither reduced graphene oxide nor tungsten oxide component. By over-coating the reduced-graphene-oxide support with WO3 nanorods, the electrocatalytic activity of the system toward the reduction of oxygen in acid medium has been enhanced even at the low Pt loading of 30 microg cm-2. The RRDE data are consistent with decreased formation of hydrogen peroxide in the presence of WO3. Among important issues are such features of the oxide as porosity, large population of hydroxyl groups, high Broensted acidity, as well as fast electron transfers coupled to unimpeded proton displacements. The conclusions are supported with mechanistic and kinetic studies involving double-potential-step chronocoulometry as an alternative diagnostic tool to rotating ring-disk voltammetry.Comment: arXiv admin note: text overlap with arXiv:1805.0315
    • …
    corecore