141,700 research outputs found

    Logical Specification and Analysis of Fault Tolerant Systems through Partial Model Checking

    Get PDF
    This paper presents a framework for a logical characterisation of fault tolerance and its formal analysis based on partial model checking techniques. The framework requires a fault tolerant system to be modelled using a formal calculus, here the CCS process algebra. To this aim we propose a uniform modelling scheme in which to specify a formal model of the system, its failing behaviour and possibly its fault-recovering procedures. Once a formal model is provided into our scheme, fault tolerance - with respect to a given property - can be formalized as an equational Āµ-calculus formula. This formula expresses in a logic formalism, all the fault scenarios satisfying that fault tolerance property. Such a characterisation understands the analysis of fault tolerance as a form of analysis of open systems and thank to partial model checking strategies, it can be made independent on any particular fault assumption. Moreover this logical characterisation makes possible the fault-tolerance verification problem be expressed as a general Āµ-calculus validation problem, for solving which many theorem proof techniques and tools are available. We present several analysis methods showing the flexibility of our approach

    Differences in intention to use educational RSS feeds between Lebanese and British students: A multiā€‘group analysis based on the technology acceptance model

    Get PDF
    Really Simple Syndication (RSS) offers a means for university students to receive timely updates from virtual learning environments. However, despite its utility, only 21% of home students surveyed at a university in Lebanon claim to have ever used the technology. To investigate whether national culture could be an influence on intention to use RSS, the survey was extended to British students in the UK. Using the Technology Adoption Model (TAM) as a research framework, 437 students responded to a questionnaire containing four constructs: behavioral intention to use; attitude towards benefit; perceived usefulness; and perceived ease of use. Principle components analysis and structural equation modelling were used to explore the psychometric qualities and utility of TAM in both contexts. The results show that adoption was significantly higher, but also modest, in the British context at 36%. Configural and metric invariance were fully supported, while scalar and factorial invariance were partially supported. Further analysis shows significant differences between perceived usefulness and perceived ease of use across the two contexts studied. Therefore, it is recommended that faculty demonstrate to students how educational RSS feeds can be used effectively to increase awareness and emphasize usefulness in both contexts

    A universe of processes and some of its guises

    Full text link
    Our starting point is a particular `canvas' aimed to `draw' theories of physics, which has symmetric monoidal categories as its mathematical backbone. In this paper we consider the conceptual foundations for this canvas, and how these can then be converted into mathematical structure. With very little structural effort (i.e. in very abstract terms) and in a very short time span the categorical quantum mechanics (CQM) research program has reproduced a surprisingly large fragment of quantum theory. It also provides new insights both in quantum foundations and in quantum information, and has even resulted in automated reasoning software called `quantomatic' which exploits the deductive power of CQM. In this paper we complement the available material by not requiring prior knowledge of category theory, and by pointing at connections to previous and current developments in the foundations of physics. This research program is also in close synergy with developments elsewhere, for example in representation theory, quantum algebra, knot theory, topological quantum field theory and several other areas.Comment: Invited chapter in: "Deep Beauty: Understanding the Quantum World through Mathematical Innovation", H. Halvorson, ed., Cambridge University Press, forthcoming. (as usual, many pictures

    Challenges in computational lower bounds

    Full text link
    We draw two incomplete, biased maps of challenges in computational complexity lower bounds
    • ā€¦
    corecore